889 resultados para sand mining
Resumo:
Pocket Data Mining (PDM) describes the full process of analysing data streams in mobile ad hoc distributed environments. Advances in mobile devices like smart phones and tablet computers have made it possible for a wide range of applications to run in such an environment. In this paper, we propose the adoption of data stream classification techniques for PDM. Evident by a thorough experimental study, it has been proved that running heterogeneous/different, or homogeneous/similar data stream classification techniques over vertically partitioned data (data partitioned according to the feature space) results in comparable performance to batch and centralised learning techniques.
Resumo:
In the recent years, the area of data mining has been experiencing considerable demand for technologies that extract knowledge from large and complex data sources. There has been substantial commercial interest as well as active research in the area that aim to develop new and improved approaches for extracting information, relationships, and patterns from large datasets. Artificial neural networks (NNs) are popular biologically-inspired intelligent methodologies, whose classification, prediction, and pattern recognition capabilities have been utilized successfully in many areas, including science, engineering, medicine, business, banking, telecommunication, and many other fields. This paper highlights from a data mining perspective the implementation of NN, using supervised and unsupervised learning, for pattern recognition, classification, prediction, and cluster analysis, and focuses the discussion on their usage in bioinformatics and financial data analysis tasks. © 2012 Wiley Periodicals, Inc.
Resumo:
The P-found protein folding and unfolding simulation repository is designed to allow scientists to perform data mining and other analyses across large, distributed simulation data sets. There are two storage components in P-found: a primary repository of simulation data that is used to populate the second component, and a data warehouse that contains important molecular properties. These properties may be used for data mining studies. Here we demonstrate how grid technologies can support multiple, distributed P-found installations. In particular, we look at two aspects: firstly, how grid data management technologies can be used to access the distributed data warehouses; and secondly, how the grid can be used to transfer analysis programs to the primary repositories — this is an important and challenging aspect of P-found, due to the large data volumes involved and the desire of scientists to maintain control of their own data. The grid technologies we are developing with the P-found system will allow new large data sets of protein folding simulations to be accessed and analysed in novel ways, with significant potential for enabling scientific discovery.
Resumo:
This article clarifies what was done with the sub-7-man positions in data-mining Harold van der Heijden's 'HHdbIV' database of chess studies prior to its publication. It emphasises that only positions in the main lines of studies were examined and that the information about uniqueness of move was not incorporated in HHdbIV. There is some reflection on the separate technical and artistic dimensions of study evaluation.
Resumo:
This article explores the contribution that artisanal and small-scale mining (ASM) makes to poverty reduction in Tanzania, based on data on gold and diamond mining in Mwanza Region. The evidence suggests that people working in mining or related services are less likely to be in poverty than those with other occupations. However, the picture is complex; while mining income can help reduce poverty and provide a buffer from livelihood shocks, peoples inability to obtain a formal mineral claim, or to effectively exploit their claims, contributes to insecurity. This is reinforced by a context in which ASM is peripheral to large-scale mining interests, is only gradually being addressed within national poverty reduction policies, and is segregated from district-level planning.
Resumo:
This article discusses the character of mineral resource governance at the margins of the state in Tanzania and the way artisanal gold miners are incorporated into mineral sector transformation. The landscape of mineral resource exploitation has changed dramatically over the past 20 years: processes of economic liberalisation have heralded massive foreign investment in large-scale gold mining, while also stimulating artisanal activities. Against this background, the article shows how artisanal gold miners are affected by contradictory processes: some have become integrated with state institutions and legal processes, while others, the large majority, are either further excluded or incorporated in ways that exacerbate insecurity and exploitation, underpinned by socio-economic inequalities. These processes are compounded by the actions of large-scale and medium-scale gold mining companies and by poor local governance. It is open to debate whether this will bring improved integration and welfare for artisanal mining communities or new forms of exclusion, although evidence suggests the latter.
Resumo:
Advances in hardware and software technology enable us to collect, store and distribute large quantities of data on a very large scale. Automatically discovering and extracting hidden knowledge in the form of patterns from these large data volumes is known as data mining. Data mining technology is not only a part of business intelligence, but is also used in many other application areas such as research, marketing and financial analytics. For example medical scientists can use patterns extracted from historic patient data in order to determine if a new patient is likely to respond positively to a particular treatment or not; marketing analysts can use extracted patterns from customer data for future advertisement campaigns; finance experts have an interest in patterns that forecast the development of certain stock market shares for investment recommendations. However, extracting knowledge in the form of patterns from massive data volumes imposes a number of computational challenges in terms of processing time, memory, bandwidth and power consumption. These challenges have led to the development of parallel and distributed data analysis approaches and the utilisation of Grid and Cloud computing. This chapter gives an overview of parallel and distributed computing approaches and how they can be used to scale up data mining to large datasets.
Resumo:
This paper analyze and study a pervasive computing system in a mining environment to track people based on RFID (radio frequency identification) technology. In first instance, we explain the RFID fundamentals and the LANDMARC (location identification based on dynamic active RFID calibration) algorithm, then we present the proposed algorithm combining LANDMARC and trilateration technique to collect the coordinates of the people inside the mine, next we generalize a pervasive computing system that can be implemented in mining, and finally we show the results and conclusions.
Resumo:
This paper introduces an architecture for identifying and modelling in real-time at a copper mine using new technologies as M2M and cloud computing with a server in the cloud and an Android client inside the mine. The proposed design brings up pervasive mining, a system with wider coverage, higher communication efficiency, better fault-tolerance, and anytime anywhere availability. This solution was designed for a plant inside the mine which cannot tolerate interruption and for which their identification in situ, in real time, is an essential part of the system to control aspects such as instability by adjusting their corresponding parameters without stopping the process.
Resumo:
The third chapter, data mining in education, examines potentials and constraints in the use of data mining in education, summarizing the potential they have to offer meaningful support to: students, teachers, tutors, authors, developers, researchers, and the education and training institutions in which they work and study.
Resumo:
This article examines Corporate Social Responsibility (CSR) and mining community development, sustainability and viability. These issues are considered focussing on current and former company-owned mining towns in Namibia. Historically company towns have been a feature of mining activity in Namibia. However, the fate of such towns upon mine closure has been and remains controversial. Declining former mining communities and even ghost mining towns can be found across the country. This article draws upon research undertaken in Namibia and considers these issues with reference to three case study communities. This article examines the complexities which surround decision-making about these communities, and the challenges faced in efforts to encourage their sustainability after mining. In this article, mine company engagements through CSR with the development, sustainability and viability of such communities are also critically discussed. The role, responsibilities, and actions of the state in relation to these communities are furthermore reflected upon. Finally, ways forward for these communities are considered.
Resumo:
n the past decade, the analysis of data has faced the challenge of dealing with very large and complex datasets and the real-time generation of data. Technologies to store and access these complex and large datasets are in place. However, robust and scalable analysis technologies are needed to extract meaningful information from these datasets. The research field of Information Visualization and Visual Data Analytics addresses this need. Information visualization and data mining are often used complementary to each other. Their common goal is the extraction of meaningful information from complex and possibly large data. However, though data mining focuses on the usage of silicon hardware, visualization techniques also aim to access the powerful image-processing capabilities of the human brain. This article highlights the research on data visualization and visual analytics techniques. Furthermore, we highlight existing visual analytics techniques, systems, and applications including a perspective on the field from the chemical process industry.
Resumo:
Analyses of neo-liberal change in African mining tend to frame discussion through the lens of an overarching structural perspective. Far less attention has been paid to the way change is enacted within social relations in mining communities. To this end, our chapter considers how development in the Tanzanian mineral sector transforms people’s relationships and stimulates new iterations of power and agency within local trajectories of development, focusing on the case of artisanal gold mining in Mgusu village in Geita region, Tanzania. The aim is to trace how neo-liberal change configures market rationality and property relations in ways that can fundamentally alter social relationships within the local community, occupational groups and families, raising both opportunities for wealth accumulation and the potential to entrench poverty. The creative action involved in these processes generates new associational ties and repertoires of practice, as miners’ respond to change and the need to protect their livelihoods.