992 resultados para running test


Relevância:

20.00% 20.00%

Publicador:

Resumo:

When a subject is heated, the stimulation of temperature-sensitive nerve endings in the skin, and the raising of the central body temperature, results in the reflex release of sympathetic vasoconstrictor tone in the skin of the extremities, causing a measurable temperature increase at the site of release. In the sympathetic release test, the subject is gently heated by placing the feet and calves in a commercially available foot warming pouch or immersing the feet and calves in warm water and wrapping the subject in blankets. Skin blood flow is estimated from measurements of skin temperature in the fingers. Normally skin temperature of the fingers is 65-75 degrees F in cool conditions (environmental temperature: 59-68 degrees F) and rises to 85-95 degrees F during body heating. Deviations in this pattern may mean that there is abnormal sympathetic vasoconstrictor control of skin blood flow. Abnormal skin blood flow can substantially impair an individual's ability to thermoregulate and has important clinical implications. During whole body heating, the skin temperature from three different skin sites is monitored and oral temperature is monitored as an index of core temperature. Students determine the fingertip temperature at which the reflex release of sympathetic activity occurs and its maximal attainment, which reflects the vasodilating capacity of this cutaneous vascular bed. Students should interpret typical sample data for certain clinical conditions (Raynaud's disease, peripheral vascular disease, and postsympathectomy) and explain why there may be altered skin blood flow in these disorders.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The non-destructive evaluation of the water permeability of concrete structures is a long standing challenge, principally due to the difficulty of achieving a uni-direction flow for computing the water permeability coefficient. The use of a guard ring (GR) was originally proposed for the in situ sorptivity test, but little information can be found for the water permeability test. In this study, the effect of a GR was carefully examined through the flow simulation, which was verified by carrying out experiments. It was observed that the GR can confine the flow near the surface, but cannot achieve a uni-directional flow across the whole depth of flow. To achieve a better performance, it is essential to consider the effects of the size of the inner seal and the GR and the significant interaction between these two. The analysis of the experimental data has indicated that the GR influences the flow for porous concretes, but there is no significant effect for dense concretes. Further investigation, validated using the flow-net theory, has shown a strong correlation between the water permeability coefficients obtained with the GR (K w-GR) and without it (K w-No GR), suggesting that one dimensional flow is not essential for interpreting data for site tests. Another practical issue was that more than 30 % of the tests with GR failed due to the difficulty of achieving a good seal between the inner and the outer chambers. Based on the work reported in this paper, a new water permeability test is proposed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The increased complexity and interconnectivity of Supervisory Control and Data Acquisition (SCADA) systems in the Smart Grid has exposed them to a wide range of cyber-security issues, and there are a multitude of potential access points for cyber attackers. This paper presents a SCADA-specific cyber-security test-bed which contains SCADA software and communication infrastructure. This test-bed is used to investigate an Address Resolution Protocol (ARP) spoofing based man-in-the-middle attack. Finally, the paper proposes a future work plan which focuses on applying intrusion detection and prevention technology to address cyber-security issues in SCADA systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several methods have been proposed to ‘clean’ the soft tissues of molluscs of mucus, so that the surface cilia can be examined microscopically. We report the first empirical test of the effectiveness of methods for removing mucus in the pallial cavity surface of chitons. Three methods were compared, at several time intervals: the enzyme hyaluronidase, the mucolytic agent N-acetyl cysteine (NAC), and seawater washing via the natural action of cilia in excised tissue. Treatment in NAC for 10 min produced the best results, and we recommend this protocol as a starting point for further investigation on mucus removal in a broader suite of taxa. We present the first description of the pallial surface cilia in the chiton Lepidochitona cinerea. During the course of this study, we also determined that these chitons were frequently infested with a ciliate protozoan parasite, Trichodina sp., which have been historically reported from chitons but never studied in detail. The parasites were absent where antimucus treatments were effective, but their abundance and large size (about 30-mm diameter) in less successful treatments obscured the view of the pallial cavity surface.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this paper is to investigate the mechanism of nanoscale fatigue using nano-impact and multiple-loading cycle nanoindentation tests, and compare it to previously reported findings of nanoscale fatigue using integrated stiffness and depth sensing approach. Two different film loading mechanism, loading history and indenter shapes are compared to comprehend the influence of test methodology on the nanoscale fatigue failure mechanisms of DLC film. An amorphous 100 nm thick DLC film was deposited on a 500 μm silicon substrate using sputtering of graphite target in pure argon atmosphere. Nano-impact and multiple-load cycle indentations were performed in the load range of 100 μN to 1000 μN and 0.1 mN to 100 mN, respectively. Both test types were conducted using conical and Berkovich indenters. Results indicate that for the case of conical indenter, the combination of nano-impact and multiple-loading cycle nanoindentation tests provide information on the life and failure mechanism of DLC film, which is comparable to the previously reported findings using the integrated stiffness and depth sensing approach. However, the comparison of results is sensitive to the applied load, loading mechanism, test-type and probe geometry. The loading mechanism and load history is therefore critical which also leads to two different definitions of film failure. The choice of exact test methodology, load and probe geometry should therefore be dictated by the in-service tribological conditions, and where necessary both test methodologies can be used to provide better insights of failure mechanism. Molecular dynamics (MD) simulations of the elastic response of nanoindentation is reported, which indicates that the elastic modulus of the film measured using MD simulation was higher than that experimentally measured. This difference is attributed to the factors related to the presence of material defects, crystal structure, residual stress, indenter geometry and loading/unloading rate differences between the MD and experimental results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The empirical association between income inequality, population health and other social problems is now well established and the research literature suggests that the relationship is not artefactual. Debate is still ongoing as to the cause of this association. Wilkinson, Marmot and colleagues have argued for some time that the relationship stems from the psycho-social effects of status comparisons. Here, income inequality is a marker of a wider status hierarchy that provokes an emotional stress response in individuals that is harmful to health and well-being. We label this the ‘status anxiety hypothesis’. If true, this would imply a structured relationship between income inequality at the societal level, individual income rank and anxiety relating to social status. This paper sets out strong and weak forms of the hypothesis and then presents three predictions concerning the structuring of ‘status anxiety’ at the individual level given different levels of national income inequality and varying individual income. We then test these predictions using data from a cross-national survey of over 34,000 individuals carried out in 2007 in 31 European countries. Respondents from low inequality countries reported less status anxiety than those in higher inequality countries at all points on the income rank curve. This is an important precondition of support for the status anxiety hypothesis and may be seen as providing support for the weaker version of the hypothesis. However, we do not find evidence to support the stronger version of the hypothesis which requires the negative effect of income rank on status anxiety to be exacerbated by increasing income inequality.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Performance evaluation of parallel software and architectural exploration of innovative hardware support face a common challenge with emerging manycore platforms: they are limited by the slow running time and the low accuracy of software simulators. Manycore FPGA prototypes are difficult to build, but they offer great rewards. Software running on such prototypes runs orders of magnitude faster than current simulators. Moreover, researchers gain significant architectural insight during the modeling process. We use the Formic FPGA prototyping board [1], which specifically targets scalable and cost-efficient multi-board prototyping, to build and test a 64-board model of a 512-core, MicroBlaze-based, non-coherent hardware prototype with a full network-on-chip in a 3D-mesh topology. We expand the hardware architecture to include the ARM Versatile Express platforms and build a 520-core heterogeneous prototype of 8 Cortex-A9 cores and 512 MicroBlaze cores. We then develop an MPI library for the prototype and evaluate it extensively using several bare-metal and MPI benchmarks. We find that our processor prototype is highly scalable, models faithfully single-chip multicore architectures, and is a very efficient platform for parallel programming research, being 50,000 times faster than software simulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this article the multibody simulation software package MADYMO for analysing and optimizing occupant safety design was used to model crash tests for Normal Containment barriers in accordance with EN 1317. The verification process was carried out by simulating a TB31 and a TB32 crash test performed on vertical portable concrete barriers and by comparing the numerical results to those obtained experimentally. The same modelling approach was applied to both tests to evaluate the predictive capacity of the modelling at two different impact speeds. A sensitivity analysis of the vehicle stiffness was also carried out. The capacity to predict all of the principal EN1317 criteria was assessed for the first time: the acceleration severity index, the theoretical head impact velocity, the barrier working width and the vehicle exit box. Results showed a maximum error of 6% for the acceleration severity index and 21% for theoretical head impact velocity for the numerical simulation in comparison to the recorded data. The exit box position was predicted with a maximum error of 4°. For the working width, a large percentage difference was observed for test TB31 due to the small absolute value of the barrier deflection but the results were well within the limit value from the standard for both tests. The sensitivity analysis showed the robustness of the modelling with respect to contact stiffness increase of ±20% and ±40%. This is the first multibody model of portable concrete barriers that can reproduce not only the acceleration severity index but all the test criteria of EN 1317 and is therefore a valuable tool for new product development and for injury biomechanics research.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Enhancing sampling and analyzing simulations are central issues in molecular simulation. Recently, we introduced PLUMED, an open-source plug-in that provides some of the most popular molecular dynamics (MD) codes with implementations of a variety of different enhanced sampling algorithms and collective variables (CVs). The rapid changes in this field, in particular new directions in enhanced sampling and dimensionality reduction together with new hardware, require a code that is more flexible and more efficient. We therefore present PLUMED 2 here a,complete rewrite of the code in an object-oriented programming language (C++). This new version introduces greater flexibility and greater modularity, which both extends its core capabilities and makes it far easier to add new methods and CVs. It also has a simpler interface with the MD engines and provides a single software library containing both tools and core facilities. Ultimately, the new code better serves the ever-growing community of users and contributors in coping with the new challenges arising in the field.

Program summary

Program title: PLUMED 2

Catalogue identifier: AEEE_v2_0

Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEEE_v2_0.html

Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland

Licensing provisions: Yes

No. of lines in distributed program, including test data, etc.: 700646

No. of bytes in distributed program, including test data, etc.: 6618136

Distribution format: tar.gz

Programming language: ANSI-C++.

Computer: Any computer capable of running an executable produced by a C++ compiler.

Operating system: Linux operating system, Unix OSs.

Has the code been vectorized or parallelized?: Yes, parallelized using MPI.

RAM: Depends on the number of atoms, the method chosen and the collective variables used.

Classification: 3, 7.7, 23. Catalogue identifier of previous version: AEEE_v1_0.

Journal reference of previous version: Comput. Phys. Comm. 180 (2009) 1961.

External routines: GNU libmatheval, Lapack, Bias, MPI. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Motivation: To date, Gene Set Analysis (GSA) approaches primarily focus on identifying differentially expressed gene sets (pathways). Methods for identifying differentially coexpressed pathways also exist but are mostly based on aggregated pairwise correlations, or other pairwise measures of coexpression. Instead, we propose Gene Sets Net Correlations Analysis (GSNCA), a multivariate differential coexpression test that accounts for the complete correlation structure between genes.

Results: In GSNCA, weight factors are assigned to genes in proportion to the genes' cross-correlations (intergene correlations). The problem of finding the weight vectors is formulated as an eigenvector problem with a unique solution. GSNCA tests the null hypothesis that for a gene set there is no difference in the weight vectors of the genes between two conditions. In simulation studies and the analyses of experimental data, we demonstrate that GSNCA, indeed, captures changes in the structure of genes' cross-correlations rather than differences in the averaged pairwise correlations. Thus, GSNCA infers differences in coexpression networks, however, bypassing method-dependent steps of network inference. As an additional result from GSNCA, we define hub genes as genes with the largest weights and show that these genes correspond frequently to major and specific pathway regulators, as well as to genes that are most affected by the biological difference between two conditions. In summary, GSNCA is a new approach for the analysis of differentially coexpressed pathways that also evaluates the importance of the genes in the pathways, thus providing unique information that may result in the generation of novel biological hypotheses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We use images of high spatial and temporal resolution, obtained using both ground- and space-based instrumentation, to investigate the role magnetic field inclination angles play in the propagation characteristics of running penumbral waves in the solar chromosphere. Analysis of a near-circular sunspot, close to the center of the solar disk, reveals a smooth rise in oscillatory period as a function of distance from the umbral barycenter. However, in one directional quadrant, corresponding to the north direction, a pronounced kink in the period-distance diagram is found. Utilizing a combination of the inversion of magnetic Stokes vectors and force-free field extrapolations, we attribute this behavior to the cut-off frequency imposed by the magnetic field geometry in this location. A rapid, localized inclination of the magnetic field lines in the north direction results in a faster increase in the dominant periodicity due to an accelerated reduction in the cut-off frequency. For the first time, we reveal how the spatial distribution of dominant wave periods, obtained with one of the highest resolution solar instruments currently available, directly reflects the magnetic geometry of the underlying sunspot, thus opening up a wealth of possibilities in future magnetohydrodynamic seismology studies. In addition, the intrinsic relationships we find between the underlying magnetic field geometries connecting the photosphere to the chromosphere, and the characteristics of running penumbral waves observed in the upper chromosphere, directly supports the interpretation that running penumbral wave phenomena are the chromospheric signature of upwardly propagating magneto-acoustic waves generated in the photosphere.