982 resultados para roads
Resumo:
Characteristics of the road infrastructure affect both the popularity of bicycling and its safety, but comparisons of the safety performance of infrastructure may be confounded by differences in the profiles of cyclists who use them. Data from a survey of 2,532 adult bicycle riders in Queensland, Australia, demonstrated that many riders rode reluctantly in particular locations and that preference for riding location was influenced by degree of experience and riding purpose. Most riders rode most often and furthest per week on urban roads, but approximately one-third of all riders (and more new riders) rode there reluctantly. Almost two-thirds of riders rode on bicycle paths, most by choice, not reluctantly. New riders rode proportionally more on bicycle paths, but continuing riders rode further in absolute terms. Utilitarian riders were more likely to ride on bicycle paths than social and fitness riders and almost all of this riding was by choice. Fitness riders were more reluctant in their use of bicycle paths, but still most of their use was by choice. One-third of the respondents reported riding on the sidewalk (legal in Queensland), with approximately two-thirds doing so reluctantly. The frequency and distance ridden on the sidewalk was less than for urban roads and bicycle paths. Sidewalks and bicycle paths were important facilities for both inexperienced and experienced riders and for utilitarian riding, especially when urban roads were considered a poor choice for cycling.
Resumo:
A road bridge containing disused flatbed rail wagons as the primary deck superstructure was performance tested in a low volume, high axle load traffic road in Queensland, Australia; some key results are presented in this paper. A fully laden truck of total weight 28.88 % of the serviceability design load prescribed in the Australian bridge code was used; its wheel positions were accurately captured using a high speed camera and synchronised with the real‐time deflections and strains measured at the critical members of the flat rail wagons. The strains remained well below the yield and narrated the existence of composite action between the reinforced concrete slab pavement and the wagon deck. A three dimensional grillage model was developed and calibrated using the test data, which established the structural adequacy of the rail wagons and the positive contribution of the reinforced concrete slab pavement to resist high axle traffic loads on a single lane bridge in the low volume roads network.
Resumo:
In response to the need to leverage private finance and the lack of competition in some parts of the Australian public sector infrastructure market, especially in the very large economic infrastructure sector procured using Pubic Private Partnerships, the Australian Federal government has demonstrated its desire to attract new sources of in-bound foreign direct investment (FDI). This paper aims to report on progress towards an investigation into the determinants of multinational contractors’ willingness to bid for Australian public sector major infrastructure projects. This research deploys Dunning’s eclectic theory for the first time in terms of in-bound FDI by multinational contractors into Australia. Elsewhere, the authors have developed Dunning’s principal hypothesis to suit the context of this research and to address a weakness arising in this hypothesis that is based on a nominal approach to the factors in Dunning's eclectic framework and which fails to speak to the relative explanatory power of these factors. In this paper, a first stage test of the authors' development of Dunning's hypothesis is presented by way of an initial review of secondary data vis-à-vis the selected sector (roads and bridges) in Australia (as the host location) and with respect to four selected home countries (China; Japan; Spain; and US). In doing so, the next stage in the research method concerning sampling and case studies is also further developed and described in this paper. In conclusion, the extent to which the initial review of secondary data suggests the relative importance of the factors in the eclectic framework is considered. It is noted that more robust conclusions are expected following the future planned stages of the research including primary data from the case studies and a global survey of the world’s largest contractors and which is briefly previewed. Finally, and beyond theoretical contributions expected from the overall approach taken to developing and testing Dunning’s framework, other expected contributions concerning research method and practical implications are mentioned.
Resumo:
With increasing media exposure and evidence of environmental impacts, it is increasingly recognized that incorporating sustainability principles in construction works is both crucial and beneficial. However a recent survey reveals that among stakeholders of infrastructure projects such as roads, there is no common understanding on what constitutes sustainability in real-life projects. Sustainability has been interpreted widely and differently and as a result, sustainability outcomes are not tangible at the project level or often neglected. Under such conditions, policies and strategies on sustainability remain largely ideological and cannot be sufficiently reflected in the actual project delivery. The major difficulty of this sustainability pursuit lies in the lack of consensus among the experts on sustainability criteria and indicators. To move ahead, these criteria and indicators are to be agreed upon. This paper reviews the sustainable infrastructure development, its criteria and indicators, focusing on road infrastructure context. It goes on to introduce a Delphi study, an integral part of a QUT research, aimed at identifying critical sustainability criteria and indicators for Australian road infrastructure projects. It paves the way for further identification of solutions for each critical indicator at a subsequent stage. The criteria, indicators and solutions will be encapsulated into a decision making framework for the enhancement of sustainability deliverables. By doing so, the research will promote more integrated thinking of and consistent approaches to the sustainability agenda in road and highway infrastructure projects in Australia.
Resumo:
Three-dimensional wagon train models have been developed for the crashworthiness analysis using multi-body dynamics approach. The contributions of the train size (number of wagon) to the frontal crash forces can be identified through the simulations. The effects of crash energy management (CEM) design and crash speed on train crashworthiness are examined. The CEM design can significantly improve the train crashworthiness and the consequential vehicle stability performance - reducing derailment risks.
Resumo:
Occupant injury comprises the largest proportion of child road crash trauma in most highly motorised countries. In Australia, road crashes are the primary cause of death for children aged 1-14 years and are among the top three causes of serious injury to this age group. For this reason considerable research attention has been focused on understanding the contributing factors and the most effective ways of improving children’s safety as car passengers. Australia has been particularly active in this area, with well regarded work being conducted on levels of use of dedicated child restraints, restraint crash performance in laboratory conditions, examination of real world restraint crash performance (case review), and studies of psychosocial factors influencing perceptions about restraints and their use (Brown & Bilston, 2006; Brown, McCaskill, Henderson & Bilston, 2006; Edwards, Anderson & Hutchinson, 2006; Lennon, 2005, 2007). New legislation for the restraint of children as vehicle passengers was enacted in Queensland in March 2010. This new legislation recognises the importance of dedicated restraint use for children up to at least age 7 years and the protective benefits of rear seating position in the event of a crash. As part of improving children’s safety and addressing key priority areas, the Queensland Injury Prevention Council (QIPC) and Department of Transport and Main Roads (TMR) commissioned the Centre for Accident Research and Road Safety, Queensland (CARRS-Q) to evaluate the impact of the new legislation. Although at the time of commencing the research the legislation had only been in force for 14 months, it was deemed critical to review its effectiveness in guiding parental choices and compliance in order to inform the design and focus of further supporting initiatives and interventions. Specifically, the research sought clear evidence of exactly what impact, if any, the legislation has had on compliance levels and what difficulties (if any) parents/carers experience in relation to interpreting as well as complying with the requirements of the new law. Knowledge about these barriers or difficulties will allow any future changes or improvements to the legislation to address such barriers and thus improve its effectiveness. Moreover, better information about how the legislation has affected parents will provide a basis to plan non-legislative comprehensive multi-strategy interventions such as community, educational or behavioural interventions with parents/carers and other stakeholder groups. In addition, it will allow identification of the most effective aspects of the legislation and those areas in need of extra attention to improve effectiveness/compliance and thus better protect children travelling in cars and improve their health and safety. This report presents the findings from the four components of the research: the literature review; observational study; intercept interviews and focus group with parents; and the interviews with key stakeholders.
Resumo:
Observational seatbelt wearing studies are a valuable tool for obtaining up-to-date information about rates of use. Given that one quarter of vehicle occupants killed on Queensland roads in recent years were not wearing seatbelts, it is important that authorities are able to identify non-wearers and take steps to increase compliance with seatbelt laws to reduce the severity of crashes and, therefore, the road toll. An observational study of seatbelt use was conducted in metropolitan, regional and rural locations throughout Queensland in May and June, 2010. Trained observers took note of seatbelt use of all occupants of passenger vehicles, noting their gender, approximate age group, seating position, vehicle type, licence type (i.e. visible L or P plates), mobile phone use, and the date, time and location of the observation. Of 19,579 observations, 99.04% (19,391) of occupants were observed wearing seatbelts, as only 0.96% of occupants (188) were not wearing a seatbelt. There were differences in seatbelt wearing rates for a number of study variables, although most were very small. However, seatbelt wearing rates were 3.84% lower for drivers observed using a mobile phone than for those who were not. While compliance with seatbelt laws seems to be very high, it is still concerning that so few non-wearers represent a disproportionately large proportion of road fatalities and serious injuries in Queensland. Road safety authorities must therefore continue to find ways to improve seatbelt use, as small gains in wearing rates will translate into significant fatality reductions.
Resumo:
Linear (or continuous) assets are engineering infrastructure that usually spans long distances and can be divided into different segments, all of which perform the same function but may be subject to different loads and environmental factors. Typical linear assets include railway lines, roads, pipelines and cables. How and when to renew such assets are critical decisions for asset owners as they normally involves significant capital investment. Through investigating the characteristics of linear asset renewal decisions and identifying the critical requirements that are associated with renewal decisions, we present a multi-criteria decision support method to help optimise renewal decisions. A case study that concerns renewal of an economiser's tubing system is a coal-fired power station is adopted to demonstrate the application of this method. Although the paper concerns a particular linear asset decision type, the approach has broad applicability for linear asset management.
Resumo:
Accurate and detailed road models play an important role in a number of geospatial applications, such as infrastructure planning, traffic monitoring, and driver assistance systems. In this thesis, an integrated approach for the automatic extraction of precise road features from high resolution aerial images and LiDAR point clouds is presented. A framework of road information modeling has been proposed, for rural and urban scenarios respectively, and an integrated system has been developed to deal with road feature extraction using image and LiDAR analysis. For road extraction in rural regions, a hierarchical image analysis is first performed to maximize the exploitation of road characteristics in different resolutions. The rough locations and directions of roads are provided by the road centerlines detected in low resolution images, both of which can be further employed to facilitate the road information generation in high resolution images. The histogram thresholding method is then chosen to classify road details in high resolution images, where color space transformation is used for data preparation. After the road surface detection, anisotropic Gaussian and Gabor filters are employed to enhance road pavement markings while constraining other ground objects, such as vegetation and houses. Afterwards, pavement markings are obtained from the filtered image using the Otsu's clustering method. The final road model is generated by superimposing the lane markings on the road surfaces, where the digital terrain model (DTM) produced by LiDAR data can also be combined to obtain the 3D road model. As the extraction of roads in urban areas is greatly affected by buildings, shadows, vehicles, and parking lots, we combine high resolution aerial images and dense LiDAR data to fully exploit the precise spectral and horizontal spatial resolution of aerial images and the accurate vertical information provided by airborne LiDAR. Objectoriented image analysis methods are employed to process the feature classiffcation and road detection in aerial images. In this process, we first utilize an adaptive mean shift (MS) segmentation algorithm to segment the original images into meaningful object-oriented clusters. Then the support vector machine (SVM) algorithm is further applied on the MS segmented image to extract road objects. Road surface detected in LiDAR intensity images is taken as a mask to remove the effects of shadows and trees. In addition, normalized DSM (nDSM) obtained from LiDAR is employed to filter out other above-ground objects, such as buildings and vehicles. The proposed road extraction approaches are tested using rural and urban datasets respectively. The rural road extraction method is performed using pan-sharpened aerial images of the Bruce Highway, Gympie, Queensland. The road extraction algorithm for urban regions is tested using the datasets of Bundaberg, which combine aerial imagery and LiDAR data. Quantitative evaluation of the extracted road information for both datasets has been carried out. The experiments and the evaluation results using Gympie datasets show that more than 96% of the road surfaces and over 90% of the lane markings are accurately reconstructed, and the false alarm rates for road surfaces and lane markings are below 3% and 2% respectively. For the urban test sites of Bundaberg, more than 93% of the road surface is correctly reconstructed, and the mis-detection rate is below 10%.
Resumo:
The deterioration of air quality is a significant issue in large and growing cities. This work investigates particulate emissions from transport, the largest source of air pollution in cities today. Emitters such as busy roads and diesel trains are investigated, with specific reference to the evolution of particles over time and distance. Diesel trains are investigated as an alternative to road traffic in investigating evolutionary processes. Higher emissions and solitary sources mean that the emitted plume can be observed over time in a single location. These results represent the first investigation of the evolution of fine and ultrafine aerosol particles from this type of source. Aerosols near a busy road are investigated, with the result that a dependence of total number concentration on distance from the road is shown to be related to the fragmentation of nanoparticle clusters. Local meteorological conditions are also monitored and humidity is shown to vary with distance from the road in a nonmonotonic way. Particles from a busy road were also examined using a scanning electron microscope, with the intention of understanding the make up of the emitted aerosol plume. It was determined that due to significant surface behaviour post-deposition, this method of analysis could not directly classify airborne pollutants. Some interesting results were obtained however, particularly in terms of composite particles and the analysis of deposited patterns. This thesis introduces new work in terms of the analysis of diesel train particulate emissions, as well as adding further evidence towards the fragmentation process of aerosol evolution in both background concentrations and emitted aerosol plumes.
Resumo:
This report discusses findings of a case study into "Road Construction Safety" undertaken as a part of the retrospective analysis component of Sustainable Built Environment National Research Centre (SBEnrc) Project 2.7 Leveraging R&D investment for the Australian Built Environment. The Queensland Department of Transport and Main Roads (QTMR) has taken a leadership role in developing a safer working environment for road construction workers. In the past decades, a range of initiatives have been introduced to contribute to improved performance in this area. Several initiatives have been undertaken by QTMR as part of their overarching commitment to safety. Three such initiatives form the basis for this case study investigation, in order to better illustrate the nature of R&D investment and its impact on day-to-day operations and the supply chain. These are the development and implementation of: (i) the Mechanical Traffic Aid: (ii) the Thermal Imaging Camera; and (iii) the Trailer-based CCTV (camera). This case study should be read in conjunction with Part 1 of this suite of reports.
Resumo:
For the further noise reduction in the future, the traffic management which controls traffic flow and physical distribution is important. To conduct the measure by the traffic management effectively, it is necessary to apply the model for predicting the traffic flow in the citywide road network. For this purpose, the existing model named AVENUE was used as a macro-traffic flow prediction model. The traffic flow model was integrated with the road vehicles' sound power model, and the new road traffic noise prediction model was established. By using this prediction model, the noise map of entire city can be made. In this study, first, the change of traffic flow on the road network after the establishment of new roads was estimated, and the change of the road traffic noise caused by the new roads was predicted. As a result, it has been found that this prediction model has the ability to estimate the change of noise map by the traffic management. In addition, the macro-traffic flow model and our conventional micro-traffic flow model were combined, and the coverage of the noise prediction model was expanded.
Resumo:
Design-build (DB) project delivery systems have increasingly been adopted by many private and public sector organizations worldwide due to the many advantages offered on projects by such systems. However, many Indonesian road infrastructure projects are still delivered using the traditional design-bid-build (DBB) project delivery system. In order to provide evidence of the benefits of DB, it is essential to identify the factors that can contribute to successful DB implementation and this paper aims to provide evidence of such factors that can promote the successful implementation of DB project delivery systems on Indonesian road infrastructure projects. Four main factors and 28 indicators were identified from an extensive literature review, and a Delphi questionnaire survey was conducted amongst 20 experts drawn from the Indonesian road infrastructure construction sector. The first round Delphi study found that regulation, competency of clients, ability to manage DB projects and external conditions were the major factors that can promote successful DB implementation.