851 resultados para risk-based approach
Resumo:
Lake water temperature (LWT) is an important driver of lake ecosystems and it has been identified as an indicator of climate change. Consequently, the Global Climate Observing System (GCOS) lists LWT as an essential climate variable. Although for some European lakes long in situ time series of LWT do exist, many lakes are not observed or only on a non-regular basis making these observations insufficient for climate monitoring. Satellite data can provide the information needed. However, only few satellite sensors offer the possibility to analyse time series which cover 25 years or more. The Advanced Very High Resolution Radiometer (AVHRR) is among these and has been flown as a heritage instrument for almost 35 years. It will be carried on for at least ten more years, offering a unique opportunity for satellite-based climate studies. Herein we present a satellite-based lake surface water temperature (LSWT) data set for European water bodies in or near the Alps based on the extensive AVHRR 1 km data record (1989–2013) of the Remote Sensing Research Group at the University of Bern. It has been compiled out of AVHRR/2 (NOAA-07, -09, -11, -14) and AVHRR/3 (NOAA-16, -17, -18, -19 and MetOp-A) data. The high accuracy needed for climate related studies requires careful pre-processing and consideration of the atmospheric state. The LSWT retrieval is based on a simulation-based scheme making use of the Radiative Transfer for TOVS (RTTOV) Version 10 together with ERA-interim reanalysis data from the European Centre for Medium-range Weather Forecasts. The resulting LSWTs were extensively compared with in situ measurements from lakes with various sizes between 14 and 580 km2 and the resulting biases and RMSEs were found to be within the range of −0.5 to 0.6 K and 1.0 to 1.6 K, respectively. The upper limits of the reported errors could be rather attributed to uncertainties in the data comparison between in situ and satellite observations than inaccuracies of the satellite retrieval. An inter-comparison with the standard Moderate-resolution Imaging Spectroradiometer (MODIS) Land Surface Temperature product exhibits RMSEs and biases in the range of 0.6 to 0.9 and −0.5 to 0.2 K, respectively. The cross-platform consistency of the retrieval was found to be within ~ 0.3 K. For one lake, the satellite-derived trend was compared with the trend of in situ measurements and both were found to be similar. Thus, orbital drift is not causing artificial temperature trends in the data set. A comparison with LSWT derived through global sea surface temperature (SST) algorithms shows lower RMSEs and biases for the simulation-based approach. A running project will apply the developed method to retrieve LSWT for all of Europe to derive the climate signal of the last 30 years. The data are available at doi:10.1594/PANGAEA.831007.
Resumo:
BACKGROUND Acetabular fractures and surgical interventions used to treat them can result in nerve injuries. To date, only small case studies have tried to explore the frequency of nerve injuries and their association with patient and treatment characteristics. High-quality data on the risk of traumatic and iatrogenic nerve lesions and their epidemiology in relation to different fracture types and surgical approaches are lacking. QUESTIONS/PURPOSES The purpose of this study was to determine (1) the proportion of patients who develop nerve injuries after acetabular fracture; (2) which fracture type(s) are associated with increased nerve injury risk; and (3) which surgical approach was associated with the highest proportion of patients developing nerve injuries using data from the German Pelvic Trauma Registry. Two secondary aims were (4) to assess hospital volume-nerve-injury relationship; and (5) internal data validity. METHODS Between March 2001 and June 2012, 2236 patients with acetabular fractures were entered into a prospectively maintained registry from 29 hospitals; of those, 2073 (92.7%) had complete records on the endpoints of interest in this retrospective study and were analyzed. The neurological status in these patients was captured at their admission and at the discharge. A total of 1395 of 2073 (67%) patients underwent surgery, and the proportions of intervention-related and other hospital-acquired nerve injuries were obtained. Overall proportions of patients developing nerve injuries, risk based on fracture type, and risk of surgical approach type were analyzed. RESULTS The proportion of patients being diagnosed with nerve injuries at hospital admission was 4% (76 of 2073) and at discharge 7% (134 or 2073). Patients with fractures of the "posterior wall" (relative risk [RR], 2.0; 95% confidence interval [CI], 1.4-2.8; p=0.001), "posterior column and posterior wall" (RR, 2.9; CI, 1.6-5.0; p=0.002), and "transverse+posterior wall" fracture (RR, 2.1; CI, 1.3-3.5; p=0.010) were more likely to have nerve injuries at hospital discharge. The proportion of patients with intervention-related nerve injuries and that of patients with other hospital-acquired nerve injuries was 2% (24 of 1395 and 46 of 2073, respectively). They both were associated with the Kocher-Langenbeck approach (RR, 3.0; CI, 1.4-6.2; p=0.006; and RR, 2.4; CI, 1.4-4.3; p=0.004, respectively). CONCLUSIONS Acetabular fractures with the involvement of posterior wall were most commonly accompanied with nerve injuries. The data suggest also that Kocher-Langenbeck approach to the pelvic ring is associated with a higher risk of perioperative nerve injuries. Trauma surgeons should be aware of common nerve injuries, particularly in posterior wall fractures. The results of the study should help provide patients with more exact information on the risk of perioperative nerve injuries in acetabular fractures. LEVEL OF EVIDENCE Level III, therapeutic study. See Guidelines for Authors for a complete description of levels of evidence.
Resumo:
We used meat-inspection data collected over a period of three years in Switzerland to evaluate slaughterhouse-level, farm-level and animal-level factors that may be associated with whole carcass condemnation (WCC) in cattle after slaughter. The objective of this study was to identify WCC risk factors so they can be communicated to, and managed by, the slaughter industry and veterinary services. During meat inspection, there were three main important predictors of the risk of WCC; the slaughtered animal's sex, age, and the size of the slaughterhouse it was processed in. WCC for injuries and significant weight loss (visible welfare indicators) were almost exclusive to smaller slaughterhouses. Cattle exhibiting clinical syndromes that were not externally visible (e.g. pneumonia lesions) and that are associated with fattening of cattle, end up in larger slaughterhouses. For this reason, it is important for animal health surveillance to collect data from both types of slaughterhouses. Other important risk factors for WCC were on-farm mortality rate and the number of cattle on the farm of origin. This study highlights the fact that the many risk factors for WCC are as complex as the production system itself, with risk factors interacting with one another in ways which are sometimes difficult to interpret biologically. Risk-based surveillance aimed at farms with reoccurring health problems (e.g. a history of above average condemnation rates) may be more appropriate than the selection, of higher-risk animals arriving at slaughter. In Switzerland, the introduction of a benchmarking system that would provide feedback to the farmer with information on condemnation reasons, and his/her performance compared to the national/regional average could be a first step towards improving herd-management and financial returns for producers.
Resumo:
Ocean biogeochemical and ecosystem processes are linked by net primary production (NPP) in the ocean's surface layer, where inorganic carbon is fixed by photosynthetic processes. Determinations of NPP are necessarily a function of phytoplankton biomass and its physiological status, but the estimation of these two terms from space has remained an elusive target. Here we present new satellite ocean color observations of phytoplankton carbon (C) and chlorophyll (Chl) biomass and show that derived Chl:C ratios closely follow anticipated physiological dependencies on light, nutrients, and temperature. With this new information, global estimates of phytoplankton growth rates (mu) and carbon-based NPP are made for the first time. Compared to an earlier chlorophyll-based approach, our carbon-based values are considerably higher in tropical oceans, show greater seasonality at middle and high latitudes, and illustrate important differences in the formation and demise of regional algal blooms. This fusion of emerging concepts from the phycological and remote sensing disciplines has the potential to fundamentally change how we model and observe carbon cycling in the global oceans.
Resumo:
Excessively high, accelerating lung cancer rates among women in Harris County, Texas, prompted this case-comparison study. Objectives were to compare patterns of employment, indirect exposures, and sociodemographic variables of lung cancer cases with comparison subjects (compeers) after standardizing for possible confounders, such as age and cigarette smoking. Lung cancer cases were microscopically confirmed, white, Harris County residents. Compeers, chosen from Medicare records and Texas Department of Public Safety records, were matched on gender, race, age, resident and vital status. Personal interviews were conducted with study subjects or next-of-kin. Industries and occupations were categorized as high risk, based on previous studies.^ Almost all cases (95.0%) and 60.0% of compeers smoked cigarettes. The odds ratio for lung cancer and smoking is 13.9. Stopping smoking between ages 30-50 years carries a lower risk than stopping at age 58 or more years. Women's employment in a high risk industry or occupation results in consistently elevated, smoking-adjusted odds ratios. Frequency and duration of employment demonstrate a moderate dose-response effect. A temporal association exists with employment in a high risk occupation during 1940-1949.^ No increased risk appeared with passive smoking. Husband's employment in a construction industry or a structural occupation significantly increased the smoking-adjusted odds ratios among cases and compeers (O.R. = 2.9, 2.2). Smoking-adjusted odds ratios increased significantly when women had resided with persons employed in cement (O.R. = 3.2) or insulation (O.R. = 5.5) manufacturing, or a high rise construction industry (O.R. = 2.4). A family history of lung cancer resulted in a two-fold increase in smoking-adjusted odds ratios. Vital status of compeers affected the odds ratios.^ Work-related exposures appear to increase the risk of lung cancer in women although cigarette smoking has the single highest odds ratio. Indirect exposure to certain employment also plays a significant role in lung cancer in women. Investigations of specific direct and indirect hazardous exposures in the workplace and home are needed. Cigarette smoking is as hazardous for women as for men. Smoking should be prevented and eliminated. ^
Resumo:
Background. The mTOR pathway is commonly altered in human tumors and promotes cell survival and proliferation. Preliminary evidence suggests this pathway's involvement in chemoresistance to platinum and taxanes, first line therapy for epithelial ovarian cancer. A pathway-based approach was used to identify individual germline single nucleotide polymorphisms (SNPs) and cumulative effects of multiple genetic variants in mTOR pathway genes and their association with clinical outcome in women with ovarian cancer. ^ Methods. The case-series was restricted to 319 non-Hispanic white women with high grade ovarian cancer treated with surgery and platinum-based chemotherapy. 135 SNPs in 20 representative genes in the mTOR pathway were genotyped. Hazard ratios (HRs) for death and Odds ratios (ORs) for failure to respond to primary therapy were estimated for each SNP using the multivariate Cox proportional hazards model and multivariate logistic regression model, respectively, while adjusting for age, stage, histology and treatment sequence. A survival tree analysis of SNPs with a statistically significant association (p<0.05) was performed to identify higher order gene-gene interactions and their association with overall survival. ^ Results. There was no statistically significant difference in survival by tumor histology or treatment regimen. The median survival for the cohort was 48.3 months. Seven SNPs were significantly associated with decreased survival. Compared to those with no unfavorable genotypes, the HR for death increased significantly with the increasing number of unfavorable genotypes and women in the highest risk category had HR of 4.06 (95% CI 2.29–7.21). The survival tree analysis also identified patients with different survival patterns based on their genetic profiles. 13 SNPs on five different genes were found to be significantly associated with a treatment response, defined as no evidence of disease after completion of primary therapy. Rare homozygous genotype of SNP rs6973428 showed a 5.5-fold increased risk compared to the wild type carrying genotypes. In the cumulative effect analysis, the highest risk group (individuals with ≥8 unfavorable genotypes) was significantly less likely to respond to chemotherapy (OR=8.40, 95% CI 3.10–22.75) compared to the low risk group (≤4 unfavorable genotypes). ^ Conclusions. A pathway-based approach can demonstrate cumulative effects of multiple genetic variants on clinical response to chemotherapy and survival. Therapy targeting the mTOR pathway may modify outcome in select patients.^
Resumo:
Lung cancer is the leading cause of cancer-related mortality in the US. Emerging evidence has shown that host genetic factors can interact with environmental exposures to influence patient susceptibility to the diseases as well as clinical outcomes, such as survival and recurrence. We aimed to identify genetic prognostic markers for non-small cell lung cancer (NSCLC), a major (85%) subtype of lung cancer, and also in other subgroups. With the fast evolution of genotyping technology, genetic association studies have went through candidate gene approach, to pathway-based approach, to the genome wide association study (GWAS). Even in the era of GWAS, pathway-based approach has its own advantages on studying cancer clinical outcomes: it is cost-effective, requiring a smaller sample size than GWAS easier to identify a validation population and explore gene-gene interactions. In the current study, we adopted pathway-based approach focusing on two critical pathways - miRNA and inflammation pathways. MicroRNAs (miRNA) post-transcriptionally regulate around 30% of human genes. Polymorphisms within miRNA processing pathways and binding sites may influence patients’ prognosis through altered gene regulation. Inflammation plays an important role in cancer initiation and progression, and also has shown to impact patients’ clinical outcomes. We first evaluated 240 single nucleotide polymorphisms (SNPs) in miRNA biogenesis genes and predicted binding sites in NSCLC patients to determine associations with clinical outcomes in early-stage (stage I and II) and late-stage (stage III and IV) lung cancer patients, respectively. First, in 535 early-stage patients, after correcting multiple comparisons, FZD4:rs713065 (hazard ratio [HR]:0.46, 95% confidence interval [CI]:0.32-0.65) showed a significant inverse association with survival in early stage surgery-only patients. SP1:rs17695156 (HR:2.22, 95% CI:1.44-3.41) and DROSHA:rs6886834 (HR:6.38, 95% CI:2.49-16.31) conferred increased risk of progression in the all patients and surgery-only populations, respectively. FAS:rs2234978 was significantly associated with improved survival in all patients (HR:0.59, 95% CI:0.44-0.77) and in the surgery plus chemotherapy populations (HR:0.19, 95% CI:0.07-0.46).. Functional genomics analysis demonstrated that this variant creates a miR-651 binding site resulting in altered miRNA regulation of FAS, providing biological plausibility for the observed association. We then analyzed these associations in 598 late-stage patients. After multiple comparison corrections, no SNPs remained significant in the late stage group, while the top SNP NAT1:rs15561 (HR=1.98, 96%CI=1.32-2.94) conferred a significantly increased risk of death in the chemotherapy subgroup. To test the hypothesis that genetic variants in the inflammation-related pathways may be associated with survival in NSCLC patients, we first conducted a three-stage study. In the discovery phase, we investigated a comprehensive panel of 11,930 inflammation-related SNPs in three independent lung cancer populations. A missense SNP (rs2071554) in HLA-DOB was significantly associated with poor survival in the discovery population (HR: 1.46, 95% CI: 1.02-2.09), internal validation population (HR: 1.51, 95% CI: 1.02-2.25), and external validation (HR: 1.52, 95% CI: 1.01-2.29) population. Rs2900420 in KLRK1 was significantly associated with a reduced risk for death in the discovery (HR: 0.76, 95% CI: 0.60-0.96) and internal validation (HR: 0.77, 95% CI: 0.61-0.99) populations, and the association reached borderline significance in the external validation population (HR: 0.80, 95% CI: 0.63-1.02). We also evaluated these inflammation-related SNPs in NSCLC patients in never smokers. Lung cancer in never smokers has been increasingly recognized as distinct disease from that in ever-smokers. A two-stage study was performed using a discovery population from MD Anderson (411 patients) and a validation population from Mayo Clinic (311 patients). Three SNPs (IL17RA:rs879576, BMP8A:rs698141, and STK:rs290229) that were significantly associated with survival were validated (pCD74:rs1056400 and CD38:rs10805347) were borderline significant (p=0.08) in the Mayo Clinic population. In the combined analysis, IL17RA:rs879576 resulted in a 40% reduction in the risk for death (p=4.1 × 10-5 [p=0.61, heterogeneity test]). We also validated a survival tree created in MD Anderson population in the Mayo Clinic population. In conclusion, our results provided strong evidence that genetic variations in specific pathways that examined (miRNA and inflammation pathways) influenced clinical outcomes in NSCLC patients, and with further functional studies, the novel loci have potential to be translated into clinical use.
Resumo:
The Obama administration's recurring policy emphasis on high-performing charter schools begs the obvious question: how do you identify a high-performing charter school? That is a crucially important policy question because any evaluation strategy that incorrectly identifies charter school performance could have negative effects on the economically and/or academically disadvantaged students who frequently attend charter schools. If low-performing schools are mislabeled and allowed to persist or encouraged to expand, then students may be harmed directly. If high-performing schools are driven from the market by misinformation, then students will lose access to programs and services that can make a difference in their lives. Most of the scholarly analysis to date has focused on comparing the performance of students in charter schools to that of similar students in traditional public schools (TPS). By design, that research measures charter school performance only in relative terms. Charter schools that outperform similarly situated, but low performing, TPSs have positive effects, even if the charter schools are mediocre in an absolute sense. This analysis describes strategies for identifying high-performing charter schools by comparing charter schools with one another. We begin by describing salient characteristics of Texas charter schools. We follow that discussion with a look at how other researchers across the country have compared charter school effectiveness with TPS effectiveness. We then present several metrics that can be used to identify high-performing charter schools. Those metrics are not mutually exclusive—one could easily justify using multiple measures to evaluate school effectiveness—but they are also not equally informative. If the goal is to measure the contributions that schools are making to student knowledge and skills, then a value-added approach like the ones highlighted in this report is clearly superior to a levels-based approach like that taken under the current accountability system.
Resumo:
My dissertation focuses on developing methods for gene-gene/environment interactions and imprinting effect detections for human complex diseases and quantitative traits. It includes three sections: (1) generalizing the Natural and Orthogonal interaction (NOIA) model for the coding technique originally developed for gene-gene (GxG) interaction and also to reduced models; (2) developing a novel statistical approach that allows for modeling gene-environment (GxE) interactions influencing disease risk, and (3) developing a statistical approach for modeling genetic variants displaying parent-of-origin effects (POEs), such as imprinting. In the past decade, genetic researchers have identified a large number of causal variants for human genetic diseases and traits by single-locus analysis, and interaction has now become a hot topic in the effort to search for the complex network between multiple genes or environmental exposures contributing to the outcome. Epistasis, also known as gene-gene interaction is the departure from additive genetic effects from several genes to a trait, which means that the same alleles of one gene could display different genetic effects under different genetic backgrounds. In this study, we propose to implement the NOIA model for association studies along with interaction for human complex traits and diseases. We compare the performance of the new statistical models we developed and the usual functional model by both simulation study and real data analysis. Both simulation and real data analysis revealed higher power of the NOIA GxG interaction model for detecting both main genetic effects and interaction effects. Through application on a melanoma dataset, we confirmed the previously identified significant regions for melanoma risk at 15q13.1, 16q24.3 and 9p21.3. We also identified potential interactions with these significant regions that contribute to melanoma risk. Based on the NOIA model, we developed a novel statistical approach that allows us to model effects from a genetic factor and binary environmental exposure that are jointly influencing disease risk. Both simulation and real data analyses revealed higher power of the NOIA model for detecting both main genetic effects and interaction effects for both quantitative and binary traits. We also found that estimates of the parameters from logistic regression for binary traits are no longer statistically uncorrelated under the alternative model when there is an association. Applying our novel approach to a lung cancer dataset, we confirmed four SNPs in 5p15 and 15q25 region to be significantly associated with lung cancer risk in Caucasians population: rs2736100, rs402710, rs16969968 and rs8034191. We also validated that rs16969968 and rs8034191 in 15q25 region are significantly interacting with smoking in Caucasian population. Our approach identified the potential interactions of SNP rs2256543 in 6p21 with smoking on contributing to lung cancer risk. Genetic imprinting is the most well-known cause for parent-of-origin effect (POE) whereby a gene is differentially expressed depending on the parental origin of the same alleles. Genetic imprinting affects several human disorders, including diabetes, breast cancer, alcoholism, and obesity. This phenomenon has been shown to be important for normal embryonic development in mammals. Traditional association approaches ignore this important genetic phenomenon. In this study, we propose a NOIA framework for a single locus association study that estimates both main allelic effects and POEs. We develop statistical (Stat-POE) and functional (Func-POE) models, and demonstrate conditions for orthogonality of the Stat-POE model. We conducted simulations for both quantitative and qualitative traits to evaluate the performance of the statistical and functional models with different levels of POEs. Our results showed that the newly proposed Stat-POE model, which ensures orthogonality of variance components if Hardy-Weinberg Equilibrium (HWE) or equal minor and major allele frequencies is satisfied, had greater power for detecting the main allelic additive effect than a Func-POE model, which codes according to allelic substitutions, for both quantitative and qualitative traits. The power for detecting the POE was the same for the Stat-POE and Func-POE models under HWE for quantitative traits.
Resumo:
Proof carrying code is a general methodology for certifying that the execution of an untrusted mobile code is safe, according to a predefined safety policy. The basic idea is that the code supplier attaches a certifícate (or proof) to the mobile code which, then, the consumer checks in order to ensure that the code is indeed safe. The potential benefit is that the consumer's task is reduced from the level of proving to the level of checking, a much simpler task. Recently, the abstract interpretation techniques developed in logic programming have been proposed as a basis for proof carrying code [1]. To this end, the certifícate is generated from an abstract interpretation-based proof of safety. Intuitively, the verification condition is extracted from a set of assertions guaranteeing safety and the answer table generated during the analysis. Given this information, it is relatively simple and fast to verify that the code does meet this proof and so its execution is safe. This extended abstract reports on experiments which illustrate several issues involved in abstract interpretation-based code certification. First, we describe the implementation of our system in the context of CiaoPP: the preprocessor of the Ciao multi-paradigm (constraint) logic programming system. Then, by means of some experiments, we show how code certification is aided in the implementation of the framework. Finally, we discuss the application of our method within the área of pervasive systems which may lack the necessary computing resources to verify safety on their own. We herein illustrate the relevance of the information inferred by existing cost analysis to control resource usage in this context. Moreover, since the (rather complex) analysis phase is replaced by a simpler, efficient checking process at the code consumer side, we believe that our abstract interpretation-based approach to proof-carrying code becomes practically applicable to this kind of systems.
Resumo:
Sensor networks are increasingly becoming one of the main sources of Big Data on the Web. However, the observations that they produce are made available with heterogeneous schemas, vocabularies and data formats, making it difficult to share and reuse these data for other purposes than those for which they were originally set up. In this thesis we address these challenges, considering how we can transform streaming raw data to rich ontology-based information that is accessible through continuous queries for streaming data. Our main contribution is an ontology-based approach for providing data access and query capabilities to streaming data sources, allowing users to express their needs at a conceptual level, independent of implementation and language-specific details. We introduce novel query rewriting and data translation techniques that rely on mapping definitions relating streaming data models to ontological concepts. Specific contributions include: • The syntax and semantics of the SPARQLStream query language for ontologybased data access, and a query rewriting approach for transforming SPARQLStream queries into streaming algebra expressions. • The design of an ontology-based streaming data access engine that can internally reuse an existing data stream engine, complex event processor or sensor middleware, using R2RML mappings for defining relationships between streaming data models and ontology concepts. Concerning the sensor metadata of such streaming data sources, we have investigated how we can use raw measurements to characterize streaming data, producing enriched data descriptions in terms of ontological models. Our specific contributions are: • A representation of sensor data time series that captures gradient information that is useful to characterize types of sensor data. • A method for classifying sensor data time series and determining the type of data, using data mining techniques, and a method for extracting semantic sensor metadata features from the time series.
Resumo:
By 2050 it is estimated that the number of worldwide Alzheimer?s disease (AD) patients will quadruple from the current number of 36 million people. To date, no single test, prior to postmortem examination, can confirm that a person suffers from AD. Therefore, there is a strong need for accurate and sensitive tools for the early diagnoses of AD. The complex etiology and multiple pathogenesis of AD call for a system-level understanding of the currently available biomarkers and the study of new biomarkers via network-based modeling of heterogeneous data types. In this review, we summarize recent research on the study of AD as a connectivity syndrome. We argue that a network-based approach in biomarker discovery will provide key insights to fully understand the network degeneration hypothesis (disease starts in specific network areas and progressively spreads to connected areas of the initial loci-networks) with a potential impact for early diagnosis and disease-modifying treatments. We introduce a new framework for the quantitative study of biomarkers that can help shorten the transition between academic research and clinical diagnosis in AD.
Resumo:
The SESAR (Single European Sky ATM Research) program is an ambitious re-search and development initiative to design the future European air traffic man-agement (ATM) system. The study of the behavior of ATM systems using agent-based modeling and simulation tools can help the development of new methods to improve their performance. This paper presents an overview of existing agent-based approaches in air transportation (paying special attention to the challenges that exist for the design of future ATM systems) and, subsequently, describes a new agent-based approach that we proposed in the CASSIOPEIA project, which was developed according to the goals of the SESAR program. In our approach, we use agent models for different ATM stakeholders, and, in contrast to previous work, our solution models new collaborative decision processes for flow traffic management, it uses an intermediate level of abstraction (useful for simulations at larger scales), and was designed to be a practical tool (open and reusable) for the development of different ATM studies. It was successfully applied in three stud-ies related to the design of future ATM systems in Europe.
Resumo:
This paper argues about the utility of advanced knowledge-based techniques to develop web-based applications that help consumers in finding products within marketplaces in e-commerce. In particular, we describe the idea of model-based approach to develop a shopping agent that dynamically configures a product according to the needs and preferences of customers. Finally, the paper summarizes the advantages provided by this approach.
Resumo:
This study suggests a theoretical framework for improving the teaching/ learning process of English employed in the Aeronautical discourse that brings together cognitive learning strategies, Genre Analysis and the Contemporary theory of Metaphor (Lakoff and Johnson 1980; Lakoff 1993). It maintains that cognitive strategies such as imagery, deduction, inference and grouping can be enhanced by means of metaphor and genre awareness in the context of content based approach to language learning. A list of image metaphors and conceptual metaphors which comes from the terminological database METACITEC is provided. The metaphorical terms from the area of Aeronautics have been taken from specialised dictionaries and have been categorised according to the conceptual metaphors they respond to, by establishing the source domains and the target domains, as well as the semantic networks found. This information makes reference to the internal mappings underlying the discourse of aeronautics reflected in five aviation accident case studies which are related to accident reports from the National Transportation Safety Board (NTSB) and provides an important source for designing language teaching tasks. La Lingüística Cognitiva y el Análisis del Género han contribuido a la mejora de la enseñanza de segundas lenguas y, en particular, al desarrollo de la competencia lingüística de los alumnos de inglés para fines específicos. Este trabajo pretende perfeccionar los procesos de enseñanza y el aprendizaje del lenguaje empleado en el discurso aeronáutico por medio de la práctica de estrategias cognitivas y prestando atención a la Teoría del análisis del género y a la Teoría contemporánea de la metáfora (Lakoff y Johnson 1980; Lakoff 1993). Con el propósito de crear recursos didácticos en los que se apliquen estrategias metafóricas, se ha elaborado un listado de metáforas de imagen y de metáforas conceptuales proveniente de la base de datos terminológica META-CITEC. Estos términos se han clasificado de acuerdo con las metáforas conceptuales y de imagen existentes en esta área de conocimiento. Para la enseñanza de este lenguaje de especialidad, se proponen las correspondencias y las proyecciones entre el dominio origen y el dominio meta que se han hallado en los informes de accidentes aéreos tomados de la Junta federal de la Seguridad en el Transporte (NTSB)