885 resultados para rhodamine, esterification, acetyl chloride, lipophilicity
Resumo:
One of the important factors in the use of portland cement concrete is its durability, and most of the situations where durability is lacking have been identifi ed and strategies to manage durability have been implemented. Geopolymer concrete, made from an alkali-activated natural pozzolan (AANP), provides an important opportunity for the reduction of carbon dioxide (CO2) emissions associated with the manufacture of concrete but has a limited history of durability studies. Until its different properties are well understood there is no desire to adopt this new technology of unknown provenance by the concrete industry. This paper presents an experimental study of oxygen and chloride permeability of AANP concrete prepared by activating Taftan andesite and Shahindej dacite (Iranian natural pozzolans), with and without calcining, and the correlations between these properties and compressive strength. The results show that compared to ordinary portland cement (OPC) concrete, AANP concrete has lower oxygen permeability at later ages; but it shows moderate to high chloride ion penetrability.
Resumo:
[EN]The chloride mass balance method was used to estimate the average diffuse groundwater recharge on northeastern Gran Canaria (Canary Islands), where the largest recharge to the volcanic island aquifer occurs. Rainwater was sampled monthly in ten rainwater collectors to determine the bulk deposition rate of chloride for the 2008–2014 period. Average chloride deposition decreases inwardly from more than 10 g·m−2 ·year−1 to about 4 g·m−2 ·year−1 . The application of the chloride mass balance method resulted in an estimated average recharge of about 28 hm3 /year or 92 mm/year (24% of precipitation) in the study area after subtracting chloride loss with surface runoff.
Resumo:
Stainless steels were developed in the early 20th century and are used where both the mechanical properties of steels and corrosion resistance are required. There is continuous research to allow stainless steel components to be produced in a more economical way and be used in more harsh environments. A necessary component in this effort is to correlate the service performance with the production processes. The central theme of this thesis is the mechanical grinding process. This is commonly used for producing stainless steel components, and results in varied surface properties that will strongly affect their service life. The influence of grinding parameters including abrasive grit size, machine power and grinding lubricant were studied for 304L austenitic stainless steel (Paper II) and 2304 duplex stainless steel (Paper I). Surface integrity was proved to vary significantly with different grinding parameters. Abrasive grit size was found to have the largest influence. Surface defects (deep grooves, smearing, adhesive/cold welding chips and indentations), a highly deformed surface layer up to a few microns in thickness and the generation of high level tensile residual stresses in the surface layer along the grinding direction were observed as the main types of damage when grinding stainless steels. A large degree of residual stress anisotropy is interpreted as being due to mechanical effects dominating over thermal effects. The effect of grinding on stress corrosion cracking behaviour of 304L austenitic stainless steel in a chloride environment was also investigated (Paper III). Depending on the surface conditions, the actual loading by four-point bend was found to deviate from the calculated value using the formula according to ASTM G39 by different amounts. Grinding-induced surface tensile residual stress was suggested as the main factor to cause micro-cracks initiation on the ground surfaces. Grinding along the loading direction was proved to increase the susceptibility to chloride-induced SCC, while grinding perpendicular to the loading direction improved SCC resistance. The knowledge obtained from this work can provide a reference for choosing appropriate grinding parameters when fabricating stainless steel components; and can also be used to help understanding the failure mechanism of ground stainless steel components during service.
Resumo:
Sub lethal (0.2 ppm) mercuric chloride induced stress related histopathological alterations in the epithelial linings of foot (podium) of the edible freshwater mussel Lamellidens marginalis (Lamarck) were studied using histochemical techniques up to 60 days of exposure. The histomorphological changes were manifested only slowly and its intensity was somewhat proportional to the duration of exposure. The immediate response of the exposed mussels was the altered mucous secretion. There was a progressive incorporation of sulphated glycoproteins into the secretory contents of the mucous cells especially in the first half of the experiment. Marked histopathological changes including necrosis, appearance of pyknotic nuclei, sloughing of epithelial cells and appearance of non-tissue spaces, etc., started appearing during the later half of the experiment. The fag end of the experiment, which witnessed prominent histomorphological changes, was accompanied by highly decreased mucous secretion. KEYWORDS: heavy metal toxicity, mercuric chloride, Lamellidens marginalis, freshwater mussel, histopathology.
Resumo:
A study into the role of secreted CLIC3 in tumour cell invasion. The initiation and progression of cancers is thought to be linked to their relationship with a population of activated fibroblasts, which are associated with tumours. I have used an organotypic approach, in which plugs of collagen I are preconditioned with fibroblastic cells, to characterise the mechanisms through which carcinoma-associated fibroblasts (CAFs) influence the invasive behaviour of tumour cells. I have found that immortalised cancer-associated fibroblasts (iCAFs) support increased invasiveness of cancer cells, and that this is associated with the ability of CAFs to increase the fibrillar collagen content of the extracellular matrix (ECM). To gain mechanistic insight into this phenomenon, an in-depth SILAC-based mass proteomic analysis was conducted, which allowed quantitative comparison of the proteomes of iCAFs and immortalised normal fibroblast (iNFs) controls. Chloride Intracellular Channel Protein 3 (CLIC3) was one of the most significantly upregulated components of the iCAF proteome. Knockdown of CLIC3 in iCAFs reduced the ability of these cells to remodel the ECM and to support tumour cell invasion through organotypic plugs. A series of experiments, including proteomic analysis of cell culture medium that had been preconditioned by iCAFs, indicated that CLIC3 itself was a component of the iCAF secretome that was responsible for the ability of iCAFs to drive tumour cell invasiveness. Moreover, addition of soluble recombinant CLIC3 (rCLIC3) was sufficient to drive the extension of invasive pseudopods in cancer cell lines, and to promote disruption of the basement membrane in a 3D in vitro model of the ductal carcinoma in situ (DCIS) to invasive ductal carcinoma (IDC) transition. My investigation into the mechanism through which extracellular CLIC3 drives tumour cell invasiveness led me to focus on the relationship between CLIC3 and the ECM modifying enzyme, transglutaminase-2 (TG2). Through this, I have found that TG2 physically associates with CLIC3 and that TG2 is necessary for CLIC3 to drive tumour cell invasiveness. These data identifying CLIC3 as a key pro-invasive factor, which is secreted by CAFs, provides an unprecedented mechanism through which the stroma may drive cancer progression.
Resumo:
Background: Chloride transport proteins are involved in a variety of human diseases and thus represent important drug targets. They are regulated in part through the amount present at the plasma membrane and tyrosine phosphorylation has been described as a novel regulator.
Resumo:
We report the synthesis of [(3-chlorobenzamido)methyl]triethylammonium chloride in a reaction of N-(chloromethyl)-3-chlorobenzamide and triethylamine in dry acetone. The structure of the newly synthesized compound was characterized with1H-NMR,13C-NMR, FTIR and Mass spectroscopy. © 2015 by the authors; licensee MDPI, Basel, Switzerland.
Resumo:
Biodiesel is an alternative diesel fuel that is produced from vegetable oils and animal fats. Currently, most biodiesel is made from oils, methanol, and an alkaline catalyst. Conventional catalysts is commonly used for catalyzing esterification of fatty acid to produce biodiesel. However, a better and greener method was found. An ionic liquid (IL) is a molten salt consisting of a cation and an anion, with low melting temperature. It offers a better solution than sulfuric acid, because it can be recycled and reused in subsequent runs after recovery steps. In this study, a Brønsted acidic IL, 1-butyl-3-methylimidazolium hydrogen sulfate ([BMIM][HSO4]) was used as a catalyst in the esterification of oleic acid with methanol into biodiesel. The effect of different operation parameters such as methanol to oil molar ratio, amount of catalyst, reaction temperature, and reaction time were tested. The optimum conditions for esterification of oleic acid were identified as oleic acid/methanol molar ratio of 1/10, amount of catalyst 10 wt%, reaction time of 4 h, and reaction temperature of 90oC. FAME content of produced biodiesel was analyzed and confirmed using GC chromatography.
Resumo:
A systematic study of the interactions between water and alkyl methyl imidazolium chloride ionic liquids at 298.2 K, based on activity coefficients estimated from water activity measurements in the entire solubility range, is presented. The results show that the activity coefficients of water in the studied ILs are controlled by the hydrophilicity of the cation and the cation-anion interaction. To achieve a deeper understanding on the interactions between water and the ILs, COSMO-RS and FTIR spectroscopy were also applied. COSMO-RS was used to predict the activity coefficient of water in the studied ionic liquids along with the excess enthalpies, suggesting the formation of complexes between three molecules of water and one IL molecule. On the basis of quantum-chemical calculations, it is found that cation-anion interaction plays an important role upon the ability of the IL anion to interact with water. The changes in the peak positions/band areas of OH vibrational modes of water as a function of IL concentration were investigated, and the impact of the cation on the hydrogen-bonding network of water is identified and discussed.
Resumo:
In this work, the partial molar volumes of glycine, l-alanine, l-valine, l-serine, and l-threonine in aqueous solutions of magnesium chloride at 0.0, 0.1, 0.3, 0.7, and 1.0 molal are addressed between 278.15 and 308.15 K. Volumes of transfer were obtained, following the rank serine > glycine a parts per thousand threonine > alanine > valine. Differently, the hydration numbers follow the sequence serine > valine > alanine > threonine > glycine, and dehydration of the amino acids is observed, rising the temperature or salt molality. The data suggest that interactions are mainly pairwise, between the ions and charged/hydrophilic groups of the amino acids. Within the Friedman and Krishnan formalism, a group-contribution scheme has been successfully applied to the pairwise volumetric interaction coefficient. Finally, the dehydration effect of MgCl2 on glycine, alanine, and serine has been predicted applying empirical correlations developed before, showing satisfactory results.
Resumo:
A adição de sal à água tem sido utilizada para a mitigação de estresse e aumento da taxa de sobrevivência em peixes. O presente estudo avaliou o efeito do cloreto de sódio (0,0; 1,0; 3,0 e 6.0 g/l) nas concentrações de cortisol plasmático, glicemia, triglicerídios, proteínas total plasmática, hematócrito, hemoglobina, número de eritrócitos, glicogênio e lipídio hepáticos, e lipídio muscular em matrinxã Brycon amazonicum adultos após quatro horas de transporte e durante período de recuperação de 96 h. Amostras foram coletadas antes e depois do transporte, bem como 24 e 96 h após a chegada. O nível de cortisol plasmático estava mais elevado logo após o transporte quando comparado à condição inicial (pré-transporte), exceto para os peixes transportados com sal nas concentrações 3,0 e 6,0 g/l. Comportamento semelhante foi observado para a glicemia, porém os peixes dos tratamentos 0,0, 1,0 e 3,0 g/l necessitaram de período superior a 24 h para recuperar a condição inicial. Foram registrados níveis mais baixos de glicogênio hepático em peixes do tratamento controle (0,0 g/l). Os parâmetros hemoglobina, número de eritrócitos, proteína plasmática total e lipídio hepático não apresentaram alterações durante o período experimental. Os valores de hematócrito diminuíram logo após o transporte em todos os tratamentos, retornando aos níveis iniciais após 24 h. Todos os tratamentos apresentaram redução nos níveis de lipídio muscular e triglicerídios durante o período de recuperação. Os resultados sugerem que a adição de 6,0 g/l de sal na água de transporte reduz as alterações fisiológicas de estresse e que é necessário período de 96 h após o transporte para a recuperação da condição inicial de matrinxãs transportados sem a adição de sal.
Resumo:
The first application of WS2, a well-known graphene analogue, as a solid acid catalyst for carboxylic acid esterification is reported. WS2 exhibits excellent specific activities and high conversion to methyl esters of (65–90%) for C2–C16 carboxylic acid esterification with methanol under mild conditions, with Turnover Frequencies between 80 and 180 h−1, and outstanding water tolerance even under equimolar water spiking. WS2 also exhibits good stability towards methyl propanoate in the continuous esterification of propanoic acid, and is a promising candidate for biofuels production.