935 resultados para resistance to acaricides


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background: The activation of hepatic stellate cells (HSCs) plays a pivotal role during liver injury because the resulting myofibroblasts (MFBs) are mainly responsible for connective tissue re-assembly. MFBs represent therefore cellular targets for anti-fibrotic therapy. In this study, we employed activated HSCs, termed M1-4HSCs, whose transdifferentiation to myofibroblastoid cells (named M-HTs) depends on transforming growth factor (TGF)-β. We analyzed the oxidative stress induced by TGF-β and examined cellular defense mechanisms upon transdifferentiation of HSCs to M-HTs. Results: We found reactive oxygen species (ROS) significantly upregulated in M1-4HSCs within 72 hours of TGF-β administration. In contrast, M-HTs harbored lower intracellular ROS content than M1-4HSCs, despite of elevated NADPH oxidase activity. These observations indicated an upregulation of cellular defense mechanisms in order to protect cells from harmful consequences caused by oxidative stress. In line with this hypothesis, superoxide dismutase activation provided the resistance to augmented radical production in M-HTs, and glutathione rather than catalase was responsible for intracellular hydrogen peroxide removal. Finally, the TGF-β/NADPH oxidase mediated ROS production correlated with the upregulation of AP-1 as well as platelet-derived growth factor receptor subunits, which points to important contributions in establishing antioxidant defense. Conclusion: The data provide evidence that TGF-β induces NADPH oxidase activity which causes radical production upon the transdifferentiation of activated HSCs to M-HTs. Myofibroblastoid cells are equipped with high levels of superoxide dismutase activity as well as glutathione to counterbalance NADPH oxidase dependent oxidative stress and to avoid cellular damage.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The idea that bacteriophage transduction plays a role in the horizontal transfer of antibiotic resistance genes is gaining momentum. Such transduction might be vital in horizontal transfer from environmental to human body-associated biomes and here we review many lines of evidence supporting this notion. It is well accepted that bacteriophages are the most abundant entities in most environments, where they have been shown to be quite persistent. This fact, together with the ability of many phages to infect bacteria belonging to different taxa, makes them suitable vehicles for gene transfer. Metagenomic studies confirm that substantial percentages of the bacteriophage particles present in most environments contain bacterial genes, including mobile genetic elements and antibiotic resistance genes. When specific genes of resistance to antibiotics are detected by real-time PCR in the bacteriophage populations of different environments, only tenfold lower numbers of these genes are observed, compared with those found in the corresponding bacterial populations. In addition, the antibiotic resistance genes from these bacteriophages are functional and generate resistance to the bacteria when these genes are transfected. Finally, reports about the transduction of antibiotic resistance genes are on the increase.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Cells from lung and other tissues are subjected to forces of opposing directions that are largely transmitted through integrin-mediated adhesions. How cells respond to force bidirectionality remains ill defined. To address this question, we nanofabricated flat-ended cylindrical Atomic Force Microscopy (AFM) tips with ~1 µm2 cross-section area. Tips were uncoated or coated with either integrin-specific (RGD) or non-specific (RGE/BSA) molecules, brought into contact with lung epithelial cells or fibroblasts for 30 s to form focal adhesion precursors, and used to probe cell resistance to deformation in compression and extension. We found that cell resistance to compression was globally higher than to extension regardless of the tip coating. In contrast, both tip-cell adhesion strength and resistance to compression and extension were the highest when probed at integrin-specific adhesions. These integrin-specific mechanoresponses required an intact actin cytoskeleton, and were dependent on tyrosine phosphatases and Ca2+ signaling. Cell asymmetric mechanoresponse to compression and extension remained after 5 minutes of tip-cell adhesion, revealing that asymmetric resistance to force directionality is an intrinsic property of lung cells, as in most soft tissues. Our findings provide new insights on how lung cells probe the mechanochemical properties of the microenvironment, an important process for migration, repair and tissue homeostasis.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Annonaceae is an ancient family of plants including approximately 50 genera growing worldwide in a quite restricted area with specific agroclimatic requirements. Only few species of this family has been cultivated and exploited commercially and most of them belonging to the genus Annona such as A. muricata, A. squamosa, the hybrid A. cherimola x A. squamosa and specially Annona cherimola: the cherimoya, commercially cultivated in Spain, Chile, California, Florida, México, Australia, Ecuador, Peru, Brazil, New Zealand and several countries in South and Central America. The cherimoya shows a high degree of heterozygosis, and to obtain homogeneous and productive orchards it is necessary to avoid the propagation by seeds of this species. Additionally, the traditional methods of vegetative propagation were inefficient and inadequate, due to the low morphogenetic potential of this species, and the low rooting rate. The in vitro tissue culture methods of micropropagation can be applied successfully to cherimoya and other Annona sp to overcome these problems. Most of the protocols of micropropagation and regeneration were developed using the cultivar Fino de Jete, which is the major cultivar in Spain. First it is developed the method to micropropagate the juvenile material of cherimoya (ENCINA et al., 1994), and later it was optimized a protocol to micropropagate adult cherimoya genotypes selected by outstanding agronomical traits (PADILLA and ENCINA, 2004) and further it was improved the process through micrografting (PADILLA and ENCINA, 2011).At the present time we are involved in inducing and obtaining new elite genotypes, as part of a breeding program for the cherimoya and other Annonas, using and optimizing different methodologies in vitro: a) Adventitious organogenesis and regeneration from cellular cultures (ENCINA, 2004), b) Ploidy manipulation of the cherimoya, to obtain haploid, tetraploid and triploid plants (seedless), c) Genetic transformation, for the genes introduction to control the postharvest processes and the genes introduction to provide resistance to pathogen and insects and d) Micropropagation and regeneration of other wild Annona or related Annonaceae species such as: Annona senegalensis, A. scleroderma, A. montana, A. reticulata, A. glabra, A. diversifolia and Rollinia sp.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Among existing fungal pathogens, Candida glabrata is outstanding in its capacity to rapidly develop resistance to currently used antifungal agents. Resistance to the class of azoles, which are still widely used agents, varies in proportion (from 5 to 20%) depending on geographical area. Moreover, resistance to the class of echinocandins, which was introduced in the late 1990s, is rising in several institutions. The recent emergence of isolates with acquired resistance to both classes of agents is a major concern since alternative therapeutic options are scarce. Although considered less pathogenic than C. albicans, C. glabrata has still evolved specific virulence traits enabling its survival and propagation in colonized and infected hosts. Development of drug resistance is usually associated with fitness costs, and this notion is documented across several microbial species. Interestingly, azole resistance in C. glabrata has revealed the opposite. Experimental models of infection showed enhanced virulence of azole-resistant isolates. Moreover, azole resistance could be associated with specific changes in adherence properties to epithelial cells or innate immunity cells (macrophages), both of which contribute to virulence changes. Here we will summarize the current knowledge on C. glabrata drug resistance and also discuss the consequences of drug resistance acquisition on the balance between C. glabrata and its hosts.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In many eusocial species, queens use pheromones to influence offspring to express worker phenotypes. Although evidence suggests that queen pheromones are honest signals of the queen's reproductive health, here I show that queen's honest signalling can result from ancestral maternal manipulation. I develop a mathematical model to study the coevolution of maternal manipulation, offspring resistance to manipulation and maternal resource allocation. I assume that (i) maternal manipulation causes offspring to be workers against offspring's interests; (ii) offspring can resist at no direct cost, as is thought to be the case with pheromonal manipulation; and (iii) the mother chooses how much resource to allocate to fertility and maternal care. In the coevolution of these traits, I find that maternal care decreases, thereby increasing the benefit that offspring obtain from help, which in the long run eliminates selection for resistance. Consequently, ancestral maternal manipulation yields stable eusociality despite costless resistance. Additionally, ancestral manipulation in the long run becomes honest signalling that induces offspring to help. These results indicate that both eusociality and its commonly associated queen honest signalling can be likely to originate from ancestral manipulation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Oxidative stress, determined by the balance between the production of damaging reactive oxygen species (ROS) and antioxidant defences, is hypothesized to play an important role in shaping the cost of reproduction and life history trade-offs. To test this hypothesis, we manipulated reproductive effort in 94 breeding pairs of tawny owls (Strix aluco) to investigate the sex- and melanism-specific effects on markers of oxidative stress in red blood cells (RBCs). This colour polymorphic bird species shows sex-specific division of labour and melanism-specific history strategies. Brood sizes at hatching were experimentally enlarged or reduced to increase or decrease reproductive effort, respectively. We obtained an integrative measure of the oxidative balance by measuring ROS production by RBCs, intracellular antioxidant glutathione levels and membrane resistance to ROS. We found that light melanic males (the sex undertaking offspring food provisioning) produced more ROS than darker conspecifics, but only when rearing an enlarged brood. In both sexes, light melanic individuals had also a larger pool of intracellular antioxidant glutathione than darker owls under relaxed reproductive conditions (i.e. reduced brood), but not when investing substantial effort in current reproduction (enlarged brood). Finally, resistance to oxidative stress was differently affected by the brood size manipulation experiment in males and females independently of their plumage coloration. Altogether, our results support the hypothesis that reproductive effort can alter the oxidative balance in a sex- and colour-specific way. This further emphasizes the close link between melanin-based coloration and life history strategies.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Resistance to semi-dry environments has been considered a crucial trait for superior growth and survival of strains used for bioaugmentation in contaminated soils. In order to compare water stress programmes, we analyse differential gene expression among three phylogenetically different strains capable of aromatic compound degradation: Arthrobacter chlorophenolicus A6, Sphingomonas wittichii RW1 and Pseudomonas veronii 1YdBTEX2. Standardized laboratory-induced water stress was imposed by shock exposure of liquid cultures to water potential decrease, induced either by addition of solutes (NaCl, solute stress) or by addition of polyethylene glycol (matric stress), both at absolute similar stress magnitudes and at those causing approximately similar decrease of growth rates. Genome-wide differential gene expression was recorded by micro-array hybridizations. Growth of P. veronii 1YdBTEX2 was the most sensitive to water potential decrease, followed by S. wittichii RW1 and A. chlorophenolicus A6. The number of genes differentially expressed under decreasing water potential was lowest for A. chlorophenolicus A6, increasing with increasing magnitude of the stress, followed by S. wittichii RW1 and P. veronii 1YdBTEX2. Gene inspection and gene ontology analysis under stress conditions causing similar growth rate reduction indicated that common reactions among the three strains included diminished expression of flagellar motility and increased expression of compatible solutes (which were strain-specific). Furthermore, a set of common genes with ill-defined function was found between all strains, including ABC transporters and aldehyde dehydrogenases, which may constitute a core conserved response to water stress. The data further suggest that stronger reduction of growth rate of P. veronii 1YdBTEX2 under water stress may be an indirect result of the response demanding heavy NADPH investment, rather than the presence or absence of a suitable stress defence mechanism per se.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Freshwater species worldwide are experiencing dramatic declines partly attributable to ongoing climate change. It is expected that the future effects of climate change could be particularly severe in mediterranean climate (med-) regions, which host many endemic species already under great stress from the high level of human development. In this article, we review the climate and climate-induced changes in streams of med-regions and the responses of stream biota, focusing on both observed and anticipated ecological responses. We also discuss current knowledge gaps and conservation challenges. Expected climate alterations have already been observed in the last decades, and include: increased annual average air temperatures; decreased annual average precipitation; hydrologic alterations; and an increase in frequency, intensity and duration of extreme events, such as floods, droughts and fires. Recent observations, which are concordant with forecasts built, show stream biota of med-regions when facing climate changes tend to be displaced towards higher elevations and upper latitudes, communities tend to change their composition and homogenize, while some life-history traits seem to provide biota with resilience and resistance to adapt to the new conditions (as being short-lived, small, and resistant to low streamflow and desiccation). Nevertheless, such responses may be insufficient to cope with current and future environmental changes. Accurate forecasts of biotic changes and possible adaptations are difficult to obtain in med-regions mainly because of the difficulty of distinguishing disturbances due to natural variability from the effects of climate change, particularly regarding hydrology. Long-term studies are needed to disentangle such variability and improve knowledge regarding the ecological responses and the detection of early warning signals to climate change. Investments should focus on taxa beyond fish and macroinvertebrates, and in covering the less studied regions of Chile and South Africa. Scientists, policy makers and water managers must be involved in the climate change dialogue because the freshwater conservation concerns are huge.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Lyme borreliosis is a tick-transmitted infection caused by the spirochete bacterium Borrelia burgdorferi sensu lato. The tick injects bacteria into host skin, where a first line defence, mainly the complement system, neutrophils, dendritic cells and macrophages are ready to attack foreign intruders. However, in the case of Lyme borreliosis, the original immune response in the skin is untypically mild among bacterial infections. A further untypical feature is the ability of B. burgdorferi to disseminate to distant organs, where, in some patients, symptoms appear after years after the original infection. This study aimed at uncovering some of the immune evasion mechanisms utilized by B. burgdorferi against the complement system, neutrophils and dendritic cells. B. burgdorferi was shown to inhibit chemotaxis of human neutrophils towards nformyl- methyl-leucyl-phenylalanine (fMLP). Outer surface protein B (OspB) of B. burgdorferi was shown to promote resistance to the attack of the complement system and neutrophil phagocytosis at low complement concentrations. B. burgdorferi was shown to inhibit migration of dendritic cells in vitro towards CCL19 and CCL21 and also in an in vivo model. This effect was shown to be due to the absence of CD38 on the borrelia-stimulated dendritic cell surface. A defect in p38 mitogen-activated-protein-kinase (p38) signaling was linked to defective CD38 expression. A defect in CD38 expression on B. burgdorferi-stimulated neutrophils was also observed. In this study, a number of novel immune evasion strategies utilized by B burgdorferi were chracterized. However, further studies are needed as other immune evasion mechanisms await to be uncovered.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The reactions of 22 sorghum (Sorghum bicolor) genotypes to six previously identified races of the sorghum anthracnose fungus Colletotrichum graminicola, were evaluated under greenhouse and field conditions. Races were inoculated in separate tests in the greenhouse. In the field, spreader rows of a susceptible genotype were artificially inoculated with a mixture of the six races of the pathogen. In the greenhouse tests, nine genotypes showed resistance to all six races. In the field high levels of dilatory resistance was observed in the sorghum genotypes CMSXS169 and CMSXS373.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Resistance to nearly all pathogens occurs abundantly in our crops. Much of the resistance exploited by breeders is of the major gene type. Polygenic resistance, although used much less, is even more abundantly available. Many types of resistance are highly elusive, the pathogen apparently adapting very easily them. Other types of resistance, the so-called durable resistance, remain effective much longer. The elusive resistance is invariably of the monogenic type and usually of the hypersensitive type directed against specialised pathogens. Race-specificity is not the cause of elusive resistance but the consequence of it. Understanding acquired resistance may open interesting approaches to control pathogens. This is even truer for molecular techniques, which already represent an enourmously wide range of possibilities. Resistance obtained through transformation is often of the quantitative type and may be durable in most cases.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Heterodera glycines and Helicotylenchus dihystera were the two most abundant plant-parasitic nematodes found in two H. glycines race 3-infested fields, Chapadão do Céu, MS and Campo Alegre, MG. These fields had been planted with resistant (R) and susceptible (S) plants to cyst nematodes. In the first field, soybean (Glycine max) FT-Cristalina (S) was susceptible to H. glycines but resistant to H. dihystera, while GOBR93 122243 (R) was just the opposite. In the second field, M-Soy 8400 (R) was more resistant to the spiral nematode than M-Soy8411 (S), but the resistance to the cyst nematode was not different between the two genotypes. The total abundance of nematodes was not different between the susceptible and resistant plants in the two fields, suggesting that H. dihystera and/or bacterial feeders and other trophic groups replaced the reduced abundance of the cyst nematodes in resistant plants. Bacterial feeders acted as a compensatory factor to plant-parasitic nematodes in ecological function. The populations of fungal feeders were higher in GOBR93 122243 (R) than in susceptible FT-Cristalina (S) in Chapadão do Céu, but lower in M-Soy 8400 (R) than in M-Soy 8411 (S) in Campo Alegre. This is being attributed to the different periods of soil samplings that were made at the florescent period in the first field, and at the final growing cycle in the second field. Only four nematodes, H. glycines, H. dihystera, Acrobeles sp. and Panagrolaimus sp. dominated the nematode resistant community GOBR93 122243 (R) in Chapadão do Céu, but dominance was shared by ten genera in Campo Alegre, which explains why the five diversity indexes (S, d, Ds, H' and T) were higher in resistant plants than in susceptible plants in field two.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The main objective of this work was to evaluate the diversification of sorghum (Sorghum bicolor) populations as a way to manage resistance to the sorghum anthracnose fungus Colletotrichum graminicola. A total of 18 three-way hybrids were obtained by crossing six single cross male-sterile F1 hybrids, derived by crossing A (non restorer sterile cytoplasm) and B (non restorer normal cytoplasm) lines, with three fertile R (restorer) lines, previously evaluated for their differential reaction to the pathogen. Variation in the level of resistance was observed, as indicated by the values of the area under the disease progress curve (AUDPC) obtained for each hybrid. Lines contributed differently to the level of resistance of each hybrid. All hybrids in which CMSXS169R was the male progenitor were classified as highly resistant. Some hybrids had a level of resistance superior to the maximum levels of each line component individually.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This work aimed to study the interaction between the model plant Arabidopsis thaliana and Xanthomonas campestris pv. campestris (Xcc), the pathogen responsible for black rot of crucifers. The response of 32 accessions of A. thaliana to the Brazilian isolate of Xcc CNPH 17 was evaluated. No immunity-like response was observed. "CS1308", "CS1566" and "CS1643" grown in continuous light were among the accessions that showed strongest resistance when inoculated with 5 x 10(6) CFU/mL. In contrast, "CS1194" and "CS1492" were among the most susceptible accessions. Similar results were obtained when plants were grown under short-day conditions. To quantify the differences in disease symptoms, total chlorophyll was extracted from contrasting accessions at different time points after inoculation. Chlorophyll levels from controls and Xcc inoculated plants showed a similar reduction in resistant accessions, whereas Xcc-inoculated susceptible accessions showed a greater reduction compared to controls. To test the specificity of resistance, accessions CS1308, CS1566, CS1643 and CS1438 (which showed partial resistance to CNPH 17), were inoculated with a more aggressive isolate of Xcc (CNPH 77) and Ralstonia solanacearum. Among the accessions tested, "CS1566" was the most resistant to Xcc CNPH 77 and also displayed resistance to R. solanacearum. Accessions CS1308, CS1566 and CS1643 were also inoculated with a high titer of Xcc CNPH 17 (5 x 10(8) CFU/mL). No collapse of tissue was observed up to 48 h after inoculation, indicating that a hypersensitive response is not involved in the resistance displayed by these accessions.