943 resultados para residual stresses
Resumo:
Este proyecto tiene por objeto el aprovechamiento de calor residual de corrientes de refinería, con bajo nivel térmico y su transformación en energía eléctrica, mediante el ciclo orgánico de Rankine (ORC). Este proceso es similar al ciclo básico de Rankine pero en vez de agua utiliza un fluido orgánico de elevado peso molecular. Este tipo de ciclos se puede utilizar para recuperar calor de fuentes de baja temperatura. Este calor se convierte en trabajo útil que se transforma en electricidad. El principio de trabajo del ciclo orgánico de Rankine es un fluido de trabajo en fase líquida que se bombea a una caldera, donde se evapora y tras pasar a través de una turbina, se condensa de nuevo para iniciar el ciclo. Para la elección de las tecnologías ORC se realizó un estudio de las disponibles en el mercado y se llevó a cabo un análisis de las corrientes con calor residual disponibles en la refinería. Seleccionadas las tecnologías, se realizó un análisis de viabilidad del uso de ciclos ORC para el aprovechamiento de la energía residual en la refinería. Los resultados confirmaron que la aplicación de estos ciclos ORC es rentable, desde el punto de vista económico, técnico y medioambiental. ABSTRACT The objective of the project is the utilization of waste heat from low thermal refinery streams and its subsequent transformation into electrical energy through the application of Organic Rankine Cycle (ORC). This process is similar to Rankine’s basic cycle but instead of water it uses a heavier molecular organic fluid. This type of cycles can be put into use to recover heat from low temperature sources. The heat transforms into useful energy that is converted into electricity. The working principle of the Organic Rankine Cycle is an active fluid in liquid phase which is pumped into a boiler where it evaporates and, after passing through a turbine, it condenses once more restarting the whole cycle over again. Before choosing the ORC technologies, a study was conducted on those products available in the market and an analysis of the waste streams in the refinery was also carried out. Having chosen the technologies, a feasibility study was performed on the use of ORC cycles for the re-utilization of waste energy in the refinery. The results confirmed that the use of ORC cycles is profitable, making it attractive from an economical, technical and environmental point of view.
Resumo:
The evaluation of neutral pressures in soil mechanics problems is a fundamental step to evaluate deformations in soils. In this paper, we present some results obtained by using the boundary element method for plane problems, describing the undrained situation as well as the consolidation problem.
Resumo:
The possibility of using more economical silicon feedstock, i.e. as support for epitaxial solar cells, is of interest when the cost reduction and the properties are attractive. We have investigated the mechanical behaviour of two blocks of upgraded metallurgical silicon, which is known to present high content of impurities even after being purified by the directional solidification process. These impurities are mainly metals like Al and silicon compounds. Thus, it is important to characterize their effect in order to improve cell performance and to ensure the survival of the wafers throughout the solar value chain. Microstructure and mechanical properties were studied by means of ring on ring and three point bending tests. Additionally, elastic modulus and fracture toughness were measured. These results showed that it is possible to obtain marked improvements in toughness when impurities act as microscopic internal crack arrestors. However, the same impurities can be initiators of damage due to residual thermal stresses introduced during the crystallization process.
Resumo:
The possibility of using more economical silicon feedstock, i.e. as support for epitaxial solar cells, is of interest when the cost reduction and the properties are attractive. We have investigated the mechanical behavior of two blocks of upgraded metallurgical silicon, which is known to present high content of impurities even after being purified by the directional solidification process. The impurities are mainly metals like Al and silicon compounds. Thus, it is important to characterize their effect in order to improve cell performance and to ensure the survival of the wafers throughout the solar value chain. Microstructure and mechanical properties were studied by means of ring on ring and three point bending tests. Additionally, Young’s modulus, hardness and fracture toughness were measured. These results showed that it is possible to obtain marked improvements in toughness when impurities act as microscopic internal crack arrestors. However, the same impurities can be initiators of damage due to residual thermal stresses introduced during the crystallization process.
Resumo:
The objective of this work is to non-destructively determine the residual stress profile in the bulk of two characteristic types of alumina-based composites, with the aim of improving their durability and structural integrity.
Resumo:
Se describen las variaciones de temperaturas y de tensiones durante la construcción de presas de hormigón compactado. The curing of concrete is an exothermic process. The heat of hydration generated induces temperature increases in the concrete, which will disappear in the long term by heat conduction in the concrete mass and thermal exchanges with the environment. The problem is of particularly interest for large concrete masses, as is the case of dams, because the time involved in the heat diffusion process grows with the square of the dimensions and a hotter dam interior implies the possibility of cracking the exposed surfaces of the dam. The Cuira dam, currently being built in Venezuela using roller compacted concrete, is a 134 m high, arch-gravity dam. In support of the design, different strategies were analysed, including various combinations of cooling of the water and the aggregate in order to achieve acceptable results. The calculations were conducted with Abaqus, taking into account all the necessary mechanical and thermal characteristics, as well as the relevant non-linearities. The analyses led to the conclusion that no cooling was required, even taking into account the stress state imposed by an early and rapid filling of the reservoir.
Resumo:
Se describe el comportamiento de los rellenos de pasta de las cámaras primarias de la mina de Aguas Teñidas y se calcula la resistencia que deben tener dichos rellenos para que no se desmoronen las paredes de los mismos que quedan expuestas al extraer las cámaras secundarias.Abstract:This article presents the study carried out at an underground mine to understand the stress distribution in the paste fills and to calculate the stability of the paste walls. The mine is operated using sublevel stopes. Three-dimensional numerical models designed with the FLAC 3D software are used to study the distribution of the vertical stresses in the paste. The numerical models have demonstrated that an arc-like effect is produced in the paste fills of the primary stopes. This effect relieves the vertical stresses and increases the stability of the exposed paste wall fill. Based on the results of the numerical models, in the 30m high secondary stopes, the arc effect starts to be evident only in paste walls with a width/height ratio lower than 0.8. 3-D calculations show that the use of Mitchell, R. J. et al. (1982) formula may be risky when estimating the fill stability in secondary stopes.
Resumo:
The dynamic behaviour of saturated sands has been studied from different perspectives. However, most experimental research on this field does not take into account the shear stress conditions existing prior to the application of dynamic loads; i.e., a null initial static shear stress (τo = 0) is assumed. The main objective of this work is to report on the influence that static shear stresses (τo) have on the behaviour of saturated sands under cyclic shear loads. This article presents the results and analysis of part of a wider experimental programme involving 30 monotonic and 26 cyclic simple shear tests for different combinations of static shear stress (τo) and cyclic shear stress (τc) (all undrained), besides identification and classification tests. The tested samples have been taken from the area of the North Entrance Mouth at the Port of Barcelona (Spain).
Resumo:
The present investigation addresse the influence of laser welding process-ing parameters used for joining dis-similar metals (ferritic to austenitic steel), on the induced residual stress field. Welding was performed on a Nd:YAG laser DY033 (3300 W) in a continuous wave (CW), keyhole mode. The base metals (BM) employed in this study are AISI 1010 carbon steel (CS) and AISI 304L austenitic stainless steel (SS). Pairs of dissimilar plates of 200 mm x 45 mm x 3 mm were butt joined by laser welding. Different sets of parameters were used to engineer the base metals apportionment at joint formation, namely distinct dilution rates. Residual strain scanning, carried out by neutron diffraction was used to assess the joints. Through-thickness residual stress maps were determined for the laser welded samples of dis-similar steels using high spatial reso-lution. As a result, an appropriate set of processing parameters, able to mi-nimize the local tensile residual stress associated to the welding process, was found.
Resumo:
In this study, autogenous laser welding was used to join thin plates of low carbon ferritic and austenitic stainless steel. Due to the differences in the thermo-physical properties of base metals, this kind of weld exhibits a complex microstructure, which frequently leads to an overall loss of joint quality. Four welded samples were prepared by using different sets of processing parameters, with the aim of minimizing the induced residual stress field. The dissimilar austenitic-ferritic joints obtained under all welding conditions were uniform and free of defects. Variations in beam position did not influence the weld geometiy, which is a typical keyhole welding. Microstructural characterization and residual strain scanning (by neutron diffraction) were used to assess the features of the joints. By varying laser beam power density and by displacing the laser beam towards the carbon steel side, an optimum combination of processing parameters was found.
Resumo:
The present investigation addresses the mechanical behavior and residual stress field of dissimilar joints produced by laser welding. Microstructure characterization and residual strain scanning, carried out by neutron diffraction, were used to assess the joints features. It was found that the heat source position influences the base metals dilution and the residual stress field associated to the welding process. The tensile behavior of the joint, different zones achieved by using a video-image based system (VIC-2D) reveals that the residual stress field, together with the positive difference in yield between the weld metal and the base materials protects the joint from being plastically deformed.
Resumo:
An inverse optimization strategy based on crystal plasticity finite element simulations of polycrystals was used to obtain the critical resolved shear stresses of two Mg?1%Mn alloys containing neodymium from macroscopic experimental data. It was found that, with respect to pure Mg, the presence of Nd increases the CRSSbasal, CRSStwinning, and the CRSSbasal/CRSStwinning ratio and decreases the CRSSnon-basal/CRSStwinning ratio. Additions of neodymium as high as 1 wt% result in similar CRSSs values for all deformation modes and, thus, in an isotropic yielding behavior.
Resumo:
One of the main limiting factors in the development of new magnesium (Mg) alloys with enhanced mechanical behavior is the need to use vast experimental campaigns for microstructure and property screening. For example, the influence of new alloying additions on the critical resolved shear stresses (CRSSs) is currently evaluated by a combination of macroscopic single-crystal experiments and crystal plasticity finite-element simulations (CPFEM). This time-consuming process could be considerably simplified by the introduction of high-throughput techniques for efficient property testing. The aim of this paper is to propose a new and fast, methodology for the estimation of the CRSSs of hexagonal close-packed metals which, moreover, requires small amounts of material. The proposed method, which combines instrumented nanoindentation and CPFEM modeling, determines CRSS values by comparison of the variation of hardness (H) for different grain orientations with the outcome of CPFEM. This novel approach has been validated in a rolled and annealed pure Mg sheet, whose H variation with grain orientation has been successfully predicted using a set of CRSSs taken from recent crystal plasticity simulations of single-crystal experiments. Moreover, the proposed methodology has been utilized to infer the effect of the alloying elements of an MN11 (Mg–1% Mn–1% Nd) alloy. The results support the hypothesis that selected rare earth intermetallic precipitates help to bring the CRSS values of basal and non-basal slip systems closer together, thus contributing to the reduced plastic anisotropy observed in these alloys
Resumo:
La mejora de pastos herbáceos en la dehesa está asociada a la aplicación de fertilizantes fosfóricos con el objetivo de incrementar la producción de materia seca y el contenido de proteínas a través del aumento de la cantidad de leguminosas. El principal factor limitante para que la fertilización sea efectiva es la disponibilidad de agua, ya que en años con escasas precipitaciones no se registran aumentos de la producción ni del contenido en leguminosas. Por otra parte, en el caso de los fertilizantes fosfóricos existe un interesante efecto residual tras el cese de la aplicación, o bien un efecto retardado (aprovechamiento en año húmedo tras aplicación en año seco). Se evaluó el efecto residual de fertilizantes fosfóricos de nueva generación, sobre la producción, riqueza y diversidad herbácea en la dehesa. El experimento se realizó en el CIA Dehesón del Encinar?, Oropesa, durante el año 2013, en un área que había sido fertilizada durante tres años consecutivos con 36 UF de P2O5 a través de un fertilizante complejo NPK (de bajo contenido en N) o con fosfatos naturales de Gafsa. Si bien no se obtuvieron incrementos de materia seca en los tratamientos con fertilización, éstos presentaron un mayor contenido en leguminosas, y valores más altos de riqueza y diversidad.
Resumo:
Leaf senescence is a recycling process characterized by a massive degradation of macromolecules to relocalize nutrients from leaves to growing or storage tissues. Our aim is to identify and analyze the C1A Cysteine ‐Protease (CysProt) family members from barley (35 cathepsin L‐,3B‐,1Hand3F‐like) involved in leaf senescence, to study their modulation by their specific inhibitors (cystatins) and to determine their roles mediated by abiotic (darkness and N starvation) and biotic (pathogens and pest) stresses.