983 resultados para relative spatial shift
Resumo:
The spatial variability of soils under a same management system is differentiated, as expressed in the properties. The spatial variability of aggregate stability of a eutrophic Red Latosol (ERL) and a dystrophic Red Latosol (DRL) under sugarcane was characterized. Samples were collected in a regular 10 m grid, in the layers 0.0-0.2 and 0.2-0.4 m, with 100 points per area, and the following properties were determined: geometric mean diameter (GMD) of aggregates, mean weight diameter (MWD) of aggregates, percent of aggregates in the > 2.0 mm class and organic matter (OM) content. The eutrophic Red Latosol (ERL) had a higher aggregate stability thn the dystrophic Red Latosol (DRL), which may be attributed to the higher clay and OM content and the gibbsitic mineralogy of this soil class. The differentiated evolution of the studied Oxisols explains the wider range and lower variation coefficient and variability, for all properties studied in the eutrophic Red Latosol.
Resumo:
A new approach to the local measurement of residual stress in microstructures is described in this paper. The presented technique takes advantage of the combined milling-imaging features of a focused ion beam (FIB) equipment to scale down the widely known hole drilling method. This method consists of drilling a small hole in a solid with inherent residual stresses and measuring the strains/displacements caused by the local stress release, that takes place around the hole. In the presented case, the displacements caused by the milling are determined by applying digital image correlation (DIC) techniques to high resolution micrographs taken before and after the milling process. The residual stress value is then obtained by fitting the measured displacements to the analytical solution of the displacement fields. The feasibility of this approach has been demonstrated on a micromachined silicon nitride membrane showing that this method has high potential for applications in the field of mechanical characterization of micro/nanoelectromechanical systems.
Resumo:
In the areas where irrigated rice is grown in the south of Brazil, few studies have been carried out to investigate the spatial variability structure of soil properties and to establish new forms of soil management as well as determine soil corrective and fertilizer applications. In this sense, this study had the objective of evaluating the spatial variability of chemical, physical and biological soil properties in a lowland area under irrigated rice cultivation in the conventional till system. For this purpose, a 10 x 10 m grid of 100 points was established, in an experimental field of the Embrapa Clima Temperado, in the County of Capão do Leão, State of Rio Grande do Sul. The spatial variability structure was evaluated by geostatistical tools and the number of subsamples required to represent each soil property in future studies was calculated using classical statistics. Results showed that the spatial variability structure of sand, silt, SMP index, cation exchange capacity (pH 7.0), Al3+ and total N properties could be detected by geostatistical analysis. A pure nugget effect was observed for the nutrients K, S and B, as well as macroporosity, mean weighted diameter of aggregates, and soil water storage. The cross validation procedure, based on linear regression and the determination coefficient, was more efficient to evaluate the quality of the adjusted mathematical model than the degree of spatial dependence. It was also concluded that the combination of classical with geostatistics can in many cases simplify the soil sampling process without losing information quality.
Resumo:
Acid-sensing ion channels (ASICs) are neuronal H(+)-gated cation channels, and the transient receptor potential vanilloid 1 channel (TRPV1) is a multimodal cation channel activated by low pH, noxious heat, capsaicin, and voltage. ASICs and TRPV1 are present in sensory neurons. It has been shown that raising the temperature increases TRPV1 and decreases ASIC H(+)-gated current amplitudes. To understand the underlying mechanisms, we have analyzed ASIC and TRPV1 function in a recombinant expression system and in dorsal root ganglion (DRG) neurons at room and physiological temperature. We show that temperature in the range studied does not affect the pH dependence of ASIC and TRPV1 activation. A temperature increase induces, however, a small alkaline shift of the pH dependence of steady-state inactivation of ASIC1a, ASIC1b, and ASIC2a. The decrease in ASIC peak current amplitudes at higher temperatures is likely in part due to the observed accelerated open channel inactivation kinetics and for some ASIC types to the changed pH dependence of steady-state inactivation. The increase in H(+)-activated TRPV1 current at the higher temperature is at least in part due to a hyperpolarizing shift in its voltage dependence. The contribution of TRPV1 relative to ASICs to H(+)-gated currents in DRG neurons increases with higher temperature and acidity. Still, ASICs remain the principal pH sensors of DRG neurons at 35°C in the pH range ≥6.
Resumo:
Among the types of remote sensing acquisitions, optical images are certainly one of the most widely relied upon data sources for Earth observation. They provide detailed measurements of the electromagnetic radiation reflected or emitted by each pixel in the scene. Through a process termed supervised land-cover classification, this allows to automatically yet accurately distinguish objects at the surface of our planet. In this respect, when producing a land-cover map of the surveyed area, the availability of training examples representative of each thematic class is crucial for the success of the classification procedure. However, in real applications, due to several constraints on the sample collection process, labeled pixels are usually scarce. When analyzing an image for which those key samples are unavailable, a viable solution consists in resorting to the ground truth data of other previously acquired images. This option is attractive but several factors such as atmospheric, ground and acquisition conditions can cause radiometric differences between the images, hindering therefore the transfer of knowledge from one image to another. The goal of this Thesis is to supply remote sensing image analysts with suitable processing techniques to ensure a robust portability of the classification models across different images. The ultimate purpose is to map the land-cover classes over large spatial and temporal extents with minimal ground information. To overcome, or simply quantify, the observed shifts in the statistical distribution of the spectra of the materials, we study four approaches issued from the field of machine learning. First, we propose a strategy to intelligently sample the image of interest to collect the labels only in correspondence of the most useful pixels. This iterative routine is based on a constant evaluation of the pertinence to the new image of the initial training data actually belonging to a different image. Second, an approach to reduce the radiometric differences among the images by projecting the respective pixels in a common new data space is presented. We analyze a kernel-based feature extraction framework suited for such problems, showing that, after this relative normalization, the cross-image generalization abilities of a classifier are highly increased. Third, we test a new data-driven measure of distance between probability distributions to assess the distortions caused by differences in the acquisition geometry affecting series of multi-angle images. Also, we gauge the portability of classification models through the sequences. In both exercises, the efficacy of classic physically- and statistically-based normalization methods is discussed. Finally, we explore a new family of approaches based on sparse representations of the samples to reciprocally convert the data space of two images. The projection function bridging the images allows a synthesis of new pixels with more similar characteristics ultimately facilitating the land-cover mapping across images.
Resumo:
Most studies analysing the infrastructure impact on regional growth show a positive relationship between both variables. However, the public capital elasticity estimated in a Cobb-Douglas function, which is the most common specification in these works, is sometimes too big to be credible, so that the results have been partially desestimated. In the present paper, we give some new advances on the real link between public capital and productivity for the Spanish regions in the period 1964-1991. Firstly, we find out that the association for both variables is smaller when controlling for regional effects, being industry the sector which reaps the most benefits from an increase in the infrastructural dotation. Secondly, concerning to the rigidity of the Cobb-Douglas function, it is surpassed by using the variable expansion method. The expanded functional form reveals both the absence of a direct effect of infrastructure and the fact that the link between infrastructure and growth depends on the level of the existing stock (threshold level) and the way infrastructure is articulated in its location relative to other factors. Finally, we analyse the importance of the spatial dimension in infrastructure impact, due to spillover effects. In this sense, the paper provides evidence of the existence of spatial autocorrelation processes that may invalidate previous results.
Resumo:
The New Economic Geography literature allows detailed analysis of the factors that determine the location decisions of firms in integrated markets. However, the competitive process is modelled in a rather rudimentary way, and the empirical evidence has usually been obtained from reduced-form econometric specifications. This study describes a structural model that takes into account strategic interactions between firms. We investigate the relationship between the degree of perceived competition ¿ not only from local firms but from firms in other regions ¿ and geographic concentration. The preliminary results indicate that, in aggregate terms, local firms present stronger competition than firms in other regions. Moreover, it is confirmed that greater geographical concentration of production reduces market power, due to the intensification of local competition; however, its impact on production costs is unclear.
Resumo:
Assessing the spatial variability of soil chemical properties has become an important aspect of soil management strategies with a view to higher crop yields with minimal environmental degradation. This study was carried out at the Centro Experimental of the Instituto Agronomico, in Campinas, São Paulo, Brazil. The aim was to characterize the spatial variability of chemical properties of a Rhodic Hapludox on a recently bulldozer-cleaned area after over 30 years of coffee cultivation. Soil samples were collected in a 20 x 20 m grid with 36 sampling points across a 1 ha area in the layers 0.0-0.2 and 0.2-0.4 m to measure the following chemical properties: pH, organic matter, K+, P, Ca2+, Mg2+, potential acidity, NH4-N, and NO3-N. Descriptive statistics were applied to assess the central tendency and dispersion moments. Geostatistical methods were applied to evaluate and to model the spatial variability of variables by calculating semivariograms and kriging interpolation. Spatial dependence patterns defined by spherical model adjusted semivariograms were made for all cited soil properties. Moderate to strong degrees of spatial dependence were found between 31 and 60 m. It was still possible to map soil spatial variability properties in the layers 0-20 cm and 20-40 cm after plant removal with bulldozers.
Resumo:
The loss of biodiversity has become a matter of urgent concern and a better understanding of local drivers is crucial for conservation. Although environmental heterogeneity is recognized as an important determinant of biodiversity, this has rarely been tested using field data at management scale. We propose and provide evidence for the simple hypothesis that local species diversity is related to spatial environmental heterogeneity. Species partition the environment into habitats. Biodiversity is therefore expected to be influenced by two aspects of spatial heterogeneity: 1) the variability of environmental conditions, which will affect the number of types of habitat, and 2) the spatial configuration of habitats, which will affect the rates of ecological processes, such as dispersal or competition. Earlier, simulation experiments predicted that both aspects of heterogeneity will influence plant species richness at a particular site. For the first time, these predictions were tested for plant communities using field data, which we collected in a wooded pasture in the Swiss Jura mountains using a four-level hierarchical sampling design. Richness generally increased with increasing environmental variability and "roughness" (i.e. decreasing spatial aggregation). Effects occurred at all scales, but the nature of the effect changed with scale, suggesting a change in the underlying mechanisms, which will need to be taken into account if scaling up to larger landscapes. Although we found significant effects of environmental heterogeneity, other factors such as history could also be important determinants. If a relationship between environmental heterogeneity and species richness can be shown to be general, recently available high-resolution environmental data can be used to complement the assessment of patterns of local richness and improve the prediction of the effects of land use change based on mean site conditions or land use history.
Resumo:
In Neo-Darwinism, variation and natural selection are the two evolutionary mechanisms which propel biological evolution. Our previous article presented a histogram model [1] consisting in populations of individuals whose number changed under the influence of variation and/or fitness, the total population remaining constant. Individuals are classified into bins, and the content of each bin is calculated generation after generation by an Excel spreadsheet. Here, we apply the histogram model to a stable population with fitness F(1)=1.00 in which one or two fitter mutants emerge. In a first scenario, a single mutant emerged in the population whose fitness was greater than 1.00. The simulations ended when the original population was reduced to a single individual. The histogram model was validated by excellent agreement between its predictions and those of a classical continuous function (Eqn. 1) which predicts the number of generations needed for a favorable mutation to spread throughout a population. But in contrast to Eqn. 1, our histogram model is adaptable to more complex scenarios, as demonstrated here. In the second and third scenarios, the original population was present at time zero together with two mutants which differed from the original population by two higher and distinct fitness values. In the fourth scenario, the large original population was present at time zero together with one fitter mutant. After a number of generations, when the mutant offspring had multiplied, a second mutant was introduced whose fitness was even greater. The histogram model also allows Shannon entropy (SE) to be monitored continuously as the information content of the total population decreases or increases. The results of these simulations illustrate, in a graphically didactic manner, the influence of natural selection, operating through relative fitness, in the emergence and dominance of a fitter mutant.
Resumo:
Soil properties are closely related with crop production and spite of the measures implemented, spatial variation has been repeatedly observed and described. Identifying and describing spatial variations of soil properties and their effects on crop yield can be a powerful decision-making tool in specific land management systems. The objective of this research was to characterize the spatial and temporal variations in crop yield and chemical and physical properties of a Rhodic Hapludox soil under no-tillage. The studied area of 3.42 ha had been cultivated since 1985 under no-tillage crop rotation in summer and winter. Yield and soil property were sampled in a regular 10 x 10 m grid, with 302 sample points. Yields of several crops were analyzed (soybean, maize, triticale, hyacinth bean and castor bean) as well as soil chemical (pH, Soil Organic Matter (SOM), P, Ca2+, Mg2+, H + Al, B, Fe, Mn, Zn, CEC, sum of bases (SB), and base saturation (V %)) and soil physical properties (saturated hydraulic conductivity, texture, density, total porosity, and mechanical penetration resistance). Data were analyzed using geostatistical analysis procedures and maps based on interpolation by kriging. Great variation in crop yields was observed in the years evaluated. The yield values in the Northern region of the study area were high in some years. Crop yields and some physical and soil chemical properties were spatially correlated.
Resumo:
Recent theoretical models of economic growth have emphasised the role of external effects on the accumulation of factors of production. Although most of the literature has considered the externalities across firms within a region, in this paper we go a step further and consider the possibility that these externalities cross the barriers of regional economies. We assess the role of these external effects in explaining growth and economic convergence. We present a simple growth model, which includes externalities across economies, developing a methodology for testing their existence and estimating their strength. In our view, spatial econometrics is naturally suited to an empirical consideration of these externalities. We obtain evidence on the presence of significant externalities both across Spanish and European regions.
Resumo:
The influence of relief forms has been studied by several authors and explains the variability in the soil attributes of a landscape. Soil physical attributes depend on relief forms, and their assessment is important in mechanized agricultural systems, such as of sugarcane. This study aimed to characterize the spatial variability in the physical soil attributes and their relationship to the hillslope curvatures in an Alfisol developed from sandstone and growing sugarcane. Grids of 100 x 100 m were delimited in a convex and a concave area. The grids had a regular spacing of 10 x 10 m, and the crossing points of this spacing determined a total of 121 georeferenced sampling points. Samples were collected to determine the physical attributes related to soil aggregates, porosity, bulk density, resistance to penetration and moisture within the 0-0.2 and 0.2-0.4 m depth. Statistical analyses, geostatistics and Student's t-tests were performed with the means of the areas. All attributes, except aggregates > 2 mm in the 0-0.2 m depth and macroporosity at both depths, showed significant differences between the hillslope curvatures. The convex area showed the highest values of the mean weighted diameter, mean geometric diameter, aggregates > 2 mm, 1-2 mm aggregates, total porosity and moisture and lower values of bulk density and resistance to penetration in both depth compared to the concave area. The number of soil attributes with greater spatial variability was higher in the concave area.