916 resultados para real-time scheduling algorithm
Resumo:
Organic electronics has grown enormously during the last decades driven by the encouraging results and the potentiality of these materials for allowing innovative applications, such as flexible-large-area displays, low-cost printable circuits, plastic solar cells and lab-on-a-chip devices. Moreover, their possible field of applications reaches from medicine, biotechnology, process control and environmental monitoring to defense and security requirements. However, a large number of questions regarding the mechanism of device operation remain unanswered. Along the most significant is the charge carrier transport in organic semiconductors, which is not yet well understood. Other example is the correlation between the morphology and the electrical response. Even if it is recognized that growth mode plays a crucial role into the performance of devices, it has not been exhaustively investigated. The main goal of this thesis was the finding of a correlation between growth modes, electrical properties and morphology in organic thin-film transistors (OTFTs). In order to study the thickness dependence of electrical performance in organic ultra-thin-film transistors, we have designed and developed a home-built experimental setup for performing real-time electrical monitoring and post-growth in situ electrical characterization techniques. We have grown pentacene TFTs under high vacuum conditions, varying systematically the deposition rate at a fixed room temperature. The drain source current IDS and the gate source current IGS were monitored in real-time; while a complete post-growth in situ electrical characterization was carried out. At the end, an ex situ morphological investigation was performed by using the atomic force microscope (AFM). In this work, we present the correlation for pentacene TFTs between growth conditions, Debye length and morphology (through the correlation length parameter). We have demonstrated that there is a layered charge carriers distribution, which is strongly dependent of the growth mode (i.e. rate deposition for a fixed temperature), leading to a variation of the conduction channel from 2 to 7 monolayers (MLs). We conciliate earlier reported results that were apparently contradictory. Our results made evident the necessity of reconsidering the concept of Debye length in a layered low-dimensional device. Additionally, we introduce by the first time a breakthrough technique. This technique makes evident the percolation of the first MLs on pentacene TFTs by monitoring the IGS in real-time, correlating morphological phenomena with the device electrical response. The present thesis is organized in the following five chapters. Chapter 1 makes an introduction to the organic electronics, illustrating the operation principle of TFTs. Chapter 2 presents the organic growth from theoretical and experimental points of view. The second part of this chapter presents the electrical characterization of OTFTs and the typical performance of pentacene devices is shown. In addition, we introduce a correcting technique for the reconstruction of measurements hampered by leakage current. In chapter 3, we describe in details the design and operation of our innovative home-built experimental setup for performing real-time and in situ electrical measurements. Some preliminary results and the breakthrough technique for correlating morphological and electrical changes are presented. Chapter 4 meets the most important results obtained in real-time and in situ conditions, which correlate growth conditions, electrical properties and morphology of pentacene TFTs. In chapter 5 we describe applicative experiments where the electrical performance of pentacene TFTs has been investigated in ambient conditions, in contact to water or aqueous solutions and, finally, in the detection of DNA concentration as label-free sensor, within the biosensing framework.
Resumo:
Während in den letzten Jahren zahlreiche Biosensoren zum spezifischen Nachweis von DNA entwickelt wurden, ist die Anwendung oberflächen-sensitiver Methoden auf enzymatische Reaktionen ein vergleichsweise neues Forschungsgebiet. Trotz der hohen Empfindlichkeit und der Möglichkeit zur Echtzeit-Beobachtung molekularer Prozesse, ist die Anwendung dieser Methoden nicht etabliert, da die Enzymaktivität durch die Nähe zur Oberfläche beeinträchtigt sein kann. Im Rahmen dieser Arbeit wurde die enzymatische Verlängerung immobilisierter DNA durch eine DNA Polymerase mit Hilfe von Oberflächenplasmonen-Fluoreszenzspektroskopie (SPFS) und einer Quarzkristall-Mikrowaage (QCM) untersucht. Die Synthese von DNA wurde im Fall der QCM als Massenzuwachs detektiert, der sich im Abfall der Resonanzfrequenz des Schwingquarzes und einem Anstieg seiner Dissipationsenergie ausdrückte. Die viskoelastischen Eigenschaften der DNA-Schichten wurden bestimmt, indem die erhaltenen Daten mit einem auf Voigt basierenden Modell ausgewertet wurden. SPFS nutzt das evaneszente elektromagnetische Feld, das mit Oberflächenplasmonen einhergeht, zur oberflächen-sensitiven Anregung von Chromophoren. Auf diese Weise wurde der Einbau von Farbstoff-markierten Nukleotiden in die entstehende DNA-Sequenz als Indikator für das Voranschreiten der Reaktion ausgenutzt. Beide Meßtechniken konnten erfolgreich zum Nachweis der DNA-Synthese herangezogen werden, wobei die katalytische Aktivität des Enzyms vergleichbar zu der in Lösung gemessenen war.
Resumo:
The hydrologic risk (and the hydro-geologic one, closely related to it) is, and has always been, a very relevant issue, due to the severe consequences that may be provoked by a flooding or by waters in general in terms of human and economic losses. Floods are natural phenomena, often catastrophic, and cannot be avoided, but their damages can be reduced if they are predicted sufficiently in advance. For this reason, the flood forecasting plays an essential role in the hydro-geological and hydrological risk prevention. Thanks to the development of sophisticated meteorological, hydrologic and hydraulic models, in recent decades the flood forecasting has made a significant progress, nonetheless, models are imperfect, which means that we are still left with a residual uncertainty on what will actually happen. In this thesis, this type of uncertainty is what will be discussed and analyzed. In operational problems, it is possible to affirm that the ultimate aim of forecasting systems is not to reproduce the river behavior, but this is only a means through which reducing the uncertainty associated to what will happen as a consequence of a precipitation event. In other words, the main objective is to assess whether or not preventive interventions should be adopted and which operational strategy may represent the best option. The main problem for a decision maker is to interpret model results and translate them into an effective intervention strategy. To make this possible, it is necessary to clearly define what is meant by uncertainty, since in the literature confusion is often made on this issue. Therefore, the first objective of this thesis is to clarify this concept, starting with a key question: should be the choice of the intervention strategy to adopt based on the evaluation of the model prediction based on its ability to represent the reality or on the evaluation of what actually will happen on the basis of the information given by the model forecast? Once the previous idea is made unambiguous, the other main concern of this work is to develope a tool that can provide an effective decision support, making possible doing objective and realistic risk evaluations. In particular, such tool should be able to provide an uncertainty assessment as accurate as possible. This means primarily three things: it must be able to correctly combine all the available deterministic forecasts, it must assess the probability distribution of the predicted quantity and it must quantify the flooding probability. Furthermore, given that the time to implement prevention strategies is often limited, the flooding probability will have to be linked to the time of occurrence. For this reason, it is necessary to quantify the flooding probability within a horizon time related to that required to implement the intervention strategy and it is also necessary to assess the probability of the flooding time.
Resumo:
1) Background: The most common methods to evaluate clarithromycin resistance is the E-Test, but is time consuming. Resistance of Hp to clarithromycin is due to point mutations in the 23S rRNA. Eight different point mutations have been related to CH resistance, but the large majority of the clarithromycin resistance depends on three point mutations (A2142C, A2142G and A2143G). A novel PCR-based clarithromycin resistance assays, even on paraffin-embedded biopsy specimens, have been proposed. Aims: to assess clarithromycin resistance detecting these point mutation (E-Test as a reference method);secondly, to investigate relation with MIC values. Methods: Paraffin-embedded biopsies of patients Hp-positive were retrieved. The A2142C, A2142G and A2143G point mutations were detected by molecular analysis after DNA extraction by using a TaqMan real-time PCR. Results: The study enrolled 86 patients: 46 resistant and 40 sensible to CH. The Hp status was evaluated at endoscopy, by rapid urease test (RUT), histology and hp culture. According to real-time PCR, 37 specimens were susceptible to clarithromycin (wild type dna) whilst the remaining 49 specimens (57%) were resistant. A2143G is the most frequent mutation. A2142C always express a resistant phenotype and A2142G leads to a resitant phenotype only if homozigous. 2) Background: Colonoscopy work-load for endoscopy services is increasing due to colorectal cancer prevention. We tested a combination of faecal tests to improve accuracy and prioritize the access to colonoscopy. Methods: we tested a combination of fecal tests (FOBT, M2-PK and calprotectin) in a group of 280 patients requiring colonoscopy. Results: 47 patients had CRC and 85 had advanced adenoma/s at colonoscopy/histology. In case of single test, for CRC detection FOBT was the test with the highest specificity and PPV, M2-PK had the highest sensitivity and higher NPV. Combination was more interesting in term of PPV. And the best combination of tests was i-FOBT + M2-PK.
Resumo:
While the use of distributed intelligence has been incrementally spreading in the design of a great number of intelligent systems, the field of Artificial Intelligence in Real Time Strategy games has remained mostly a centralized environment. Despite turn-based games have attained AIs of world-class level, the fast paced nature of RTS games has proven to be a significant obstacle to the quality of its AIs. Chapter 1 introduces RTS games describing their characteristics, mechanics and elements. Chapter 2 introduces Multi-Agent Systems and the use of the Beliefs-Desires-Intentions abstraction, analysing the possibilities given by self-computing properties. In Chapter 3 the current state of AI development in RTS games is analyzed highlighting the struggles of the gaming industry to produce valuable. The focus on improving multiplayer experience has impacted gravely on the quality of the AIs thus leaving them with serious flaws that impair their ability to challenge and entertain players. Chapter 4 explores different aspects of AI development for RTS, evaluating the potential strengths and weaknesses of an agent-based approach and analysing which aspects can benefit the most against centralized AIs. Chapter 5 describes a generic agent-based framework for RTS games where every game entity becomes an agent, each of which having its own knowledge and set of goals. Different aspects of the game, like economy, exploration and warfare are also analysed, and some agent-based solutions are outlined. The possible exploitation of self-computing properties to efficiently organize the agents activity is then inspected. Chapter 6 presents the design and implementation of an AI for an existing Open Source game in beta development stage: 0 a.d., an historical RTS game on ancient warfare which features a modern graphical engine and evolved mechanics. The entities in the conceptual framework are implemented in a new agent-based platform seamlessly nested inside the existing game engine, called ABot, widely described in Chapters 7, 8 and 9. Chapter 10 and 11 include the design and realization of a new agent based language useful for defining behavioural modules for the agents in ABot, paving the way for a wider spectrum of contributors. Chapter 12 concludes the work analysing the outcome of tests meant to evaluate strategies, realism and pure performance, finally drawing conclusions and future works in Chapter 13.
Sviluppo di un sistema miniaturizzato per il controllo real-time di assetto di nano e microsatelliti
Resumo:
Microsatelliti e nanosatelliti, come ad esempio i Cubesat, sono carenti di sistemi integrati di controllo d’assetto e di manovra orbitale. Lo scopo di questa tesi è stato quello di realizzare un sistema compatibile con Cubesat di una unità, completo di attuatori magnetici e attuatori meccanici, comprendente tutti i sensori e l’elettronica necessaria per il suo funzionamento, creando un dispositivo totalmente indipendente dal veicolo su cui è installato, capace di funzionare sia autonomamente che ricevendo comandi da terra. Nella tesi sono descritte le campagne di simulazioni numeriche effettuate per validare le scelte tecnologiche effettuate, le fasi di sviluppo dell’elettronica e della meccanica, i test sui prototipi realizzati e il funzionamento del sistema finale. Una integrazione così estrema dei componenti può implicare delle interferenze tra un dispositivo e l’altro, come nel caso dei magnetotorquer e dei magnetometri. Sono stati quindi studiati e valutati gli effetti della loro interazione, verificandone l’entità e la validità del progetto. Poiché i componenti utilizzati sono tutti di basso costo e di derivazione terrestre, è stata effettuata una breve introduzione teorica agli effetti dell’ambiente spaziale sull’elettronica, per poi descrivere un sistema fault-tolerant basato su nuove teorie costruttive. Questo sistema è stato realizzato e testato, verificando così la possibilità di realizzare un controller affidabile e resistente all’ambiente spaziale per il sistema di controllo d’assetto. Sono state infine analizzate alcune possibili versioni avanzate del sistema, delineandone i principali aspetti progettuali, come ad esempio l’integrazione di GPS e l’implementazione di funzioni di determinazione d’assetto sfruttando i sensori presenti a bordo.
Resumo:
Cost, performance and availability considerations are forcing even the most conservative high-integrity embedded real-time systems industry to migrate from simple hardware processors to ones equipped with caches and other acceleration features. This migration disrupts the practices and solutions that industry had developed and consolidated over the years to perform timing analysis. Industry that are confident with the efficiency/effectiveness of their verification and validation processes for old-generation processors, do not have sufficient insight on the effects of the migration to cache-equipped processors. Caches are perceived as an additional source of complexity, which has potential for shattering the guarantees of cost- and schedule-constrained qualification of their systems. The current industrial approach to timing analysis is ill-equipped to cope with the variability incurred by caches. Conversely, the application of advanced WCET analysis techniques on real-world industrial software, developed without analysability in mind, is hardly feasible. We propose a development approach aimed at minimising the cache jitters, as well as at enabling the application of advanced WCET analysis techniques to industrial systems. Our approach builds on:(i) identification of those software constructs that may impede or complicate timing analysis in industrial-scale systems; (ii) elaboration of practical means, under the model-driven engineering (MDE) paradigm, to enforce the automated generation of software that is analyzable by construction; (iii) implementation of a layout optimisation method to remove cache jitters stemming from the software layout in memory, with the intent of facilitating incremental software development, which is of high strategic interest to industry. The integration of those constituents in a structured approach to timing analysis achieves two interesting properties: the resulting software is analysable from the earliest releases onwards - as opposed to becoming so only when the system is final - and more easily amenable to advanced timing analysis by construction, regardless of the system scale and complexity.
Resumo:
Environmental computer models are deterministic models devoted to predict several environmental phenomena such as air pollution or meteorological events. Numerical model output is given in terms of averages over grid cells, usually at high spatial and temporal resolution. However, these outputs are often biased with unknown calibration and not equipped with any information about the associated uncertainty. Conversely, data collected at monitoring stations is more accurate since they essentially provide the true levels. Due the leading role played by numerical models, it now important to compare model output with observations. Statistical methods developed to combine numerical model output and station data are usually referred to as data fusion. In this work, we first combine ozone monitoring data with ozone predictions from the Eta-CMAQ air quality model in order to forecast real-time current 8-hour average ozone level defined as the average of the previous four hours, current hour, and predictions for the next three hours. We propose a Bayesian downscaler model based on first differences with a flexible coefficient structure and an efficient computational strategy to fit model parameters. Model validation for the eastern United States shows consequential improvement of our fully inferential approach compared with the current real-time forecasting system. Furthermore, we consider the introduction of temperature data from a weather forecast model into the downscaler, showing improved real-time ozone predictions. Finally, we introduce a hierarchical model to obtain spatially varying uncertainty associated with numerical model output. We show how we can learn about such uncertainty through suitable stochastic data fusion modeling using some external validation data. We illustrate our Bayesian model by providing the uncertainty map associated with a temperature output over the northeastern United States.
Resumo:
This thesis is a collection of works focused on the topic of Earthquake Early Warning, with a special attention to large magnitude events. The topic is addressed from different points of view and the structure of the thesis reflects the variety of the aspects which have been analyzed. The first part is dedicated to the giant, 2011 Tohoku-Oki earthquake. The main features of the rupture process are first discussed. The earthquake is then used as a case study to test the feasibility Early Warning methodologies for very large events. Limitations of the standard approaches for large events arise in this chapter. The difficulties are related to the real-time magnitude estimate from the first few seconds of recorded signal. An evolutionary strategy for the real-time magnitude estimate is proposed and applied to the single Tohoku-Oki earthquake. In the second part of the thesis a larger number of earthquakes is analyzed, including small, moderate and large events. Starting from the measurement of two Early Warning parameters, the behavior of small and large earthquakes in the initial portion of recorded signals is investigated. The aim is to understand whether small and large earthquakes can be distinguished from the initial stage of their rupture process. A physical model and a plausible interpretation to justify the observations are proposed. The third part of the thesis is focused on practical, real-time approaches for the rapid identification of the potentially damaged zone during a seismic event. Two different approaches for the rapid prediction of the damage area are proposed and tested. The first one is a threshold-based method which uses traditional seismic data. Then an innovative approach using continuous, GPS data is explored. Both strategies improve the prediction of large scale effects of strong earthquakes.
Resumo:
Ziel dieser Dissertation ist die experimentelle Charakterisierung und quantitative Beschreibung der Hybridisierung von komplementären Nukleinsäuresträngen mit oberflächengebundenen Fängermolekülen für die Entwicklung von integrierten Biosensoren. Im Gegensatz zu lösungsbasierten Verfahren ist mit Microarray Substraten die Untersuchung vieler Nukleinsäurekombinationen parallel möglich. Als biologisch relevantes Evaluierungssystem wurde das in Eukaryoten universell exprimierte Actin Gen aus unterschiedlichen Pflanzenspezies verwendet. Dieses Testsystem ermöglicht es, nahe verwandte Pflanzenarten auf Grund von geringen Unterschieden in der Gen-Sequenz (SNPs) zu charakterisieren. Aufbauend auf dieses gut studierte Modell eines House-Keeping Genes wurde ein umfassendes Microarray System, bestehend aus kurzen und langen Oligonukleotiden (mit eingebauten LNA-Molekülen), cDNAs sowie DNA und RNA Targets realisiert. Damit konnte ein für online Messung optimiertes Testsystem mit hohen Signalstärken entwickelt werden. Basierend auf den Ergebnissen wurde der gesamte Signalpfad von Nukleinsärekonzentration bis zum digitalen Wert modelliert. Die aus der Entwicklung und den Experimenten gewonnen Erkenntnisse über die Kinetik und Thermodynamik von Hybridisierung sind in drei Publikationen zusammengefasst die das Rückgrat dieser Dissertation bilden. Die erste Publikation beschreibt die Verbesserung der Reproduzierbarkeit und Spezifizität von Microarray Ergebnissen durch online Messung von Kinetik und Thermodynamik gegenüber endpunktbasierten Messungen mit Standard Microarrays. Für die Auswertung der riesigen Datenmengen wurden zwei Algorithmen entwickelt, eine reaktionskinetische Modellierung der Isothermen und ein auf der Fermi-Dirac Statistik beruhende Beschreibung des Schmelzüberganges. Diese Algorithmen werden in der zweiten Publikation beschrieben. Durch die Realisierung von gleichen Sequenzen in den chemisch unterschiedlichen Nukleinsäuren (DNA, RNA und LNA) ist es möglich, definierte Unterschiede in der Konformation des Riboserings und der C5-Methylgruppe der Pyrimidine zu untersuchen. Die kompetitive Wechselwirkung dieser unterschiedlichen Nukleinsäuren gleicher Sequenz und die Auswirkungen auf Kinetik und Thermodynamik ist das Thema der dritten Publikation. Neben der molekularbiologischen und technologischen Entwicklung im Bereich der Sensorik von Hybridisierungsreaktionen oberflächengebundener Nukleinsäuremolekülen, der automatisierten Auswertung und Modellierung der anfallenden Datenmengen und der damit verbundenen besseren quantitativen Beschreibung von Kinetik und Thermodynamik dieser Reaktionen tragen die Ergebnisse zum besseren Verständnis der physikalisch-chemischen Struktur des elementarsten biologischen Moleküls und seiner nach wie vor nicht vollständig verstandenen Spezifizität bei.
Resumo:
L'elaborato affronta la progettazione di un'intelligenza artificiale per giochi strategici real-time in cui viene descritta la suddivisione dei livelli di astrazione e vengono prese in considerazione due architetture specifiche, SORTS ed EISBot, facendo particolare attenzione sulle problematiche riscontrate nell'ambiente di gioco.