972 resultados para rate function
Resumo:
The objective of the present study was to analyze hepatic mitochondrial function in patients with familial amyloidotic polyneuropathy (FAP) undergoing cadaveric donor orthotopic liver transplantation. From February `2005 to May 2007, eight patients with FAP, ranging in age from 34 to 41 years and with Model for End-Stage Liver Disease scores ranging from 24 to 29. Underwent orthotopic transplantation using a liver from a deceased donor by the piggyback method. Immediately before beginning the recipient hepatectomy in a patient with FAP, a biopsy was obtained for analysis of mitochondrial function (FAP group). The control group consisted of 15 patients undergoing hepatic surgery to treat small tumors of the liver. Mitochondrial respiration was determined on the basis of oxygen consumption by energized mitochondria using a polarographic method. The membrane potential of the mitochondria was determined spectrofluorometrically. Data were analyzed statistically by the Mann-Whitney test, with the level of significance set at 5%. State 3 and 4 values, respiratory control ratio, and membrane potential were 47 +/- 8 versus 28 +/- 10 natoms O/min/mg protein (P <.05); 14 +/- 3 vs 17 +/- 7 nat.O/min/ mg.prot.mit. (P >.05); 3.6+/- .5 vs 1.7 +/- 0.7 (P <.05); and 135 +/- 5.2 vs 135 +/- 6 mV (P >.05) for control versus FAP patients, respectively, demonstrating a decreased energy status of the liver in FAP.
Resumo:
Background: There is only limited knowledge on how the quantification of valvular regurgitation by color Doppler is affected by changing blood viscosity. This study was designed to evaluate the effect of changing blood viscosity on the vena contracta width using an in vitro model of valvular insufficiency capable of providing ample variation in the rate and stroke volume. Methods: We constructed a pulsatile flow model filled with human blood at varying hematocrit (15%, 35%, and 55%) and corresponding blood viscosity (blood/water viscosity: 2.6, 4.8, 9.1) levels in which jets were driven through a known orifice (7 mm(2)) into a 110 mL compliant receiving chamber (compliance: 2.2 mL/mmHg) by a pulsatile pump. In addition, we used variable pump stroke volumes (5, 7.5, and 10 mL) and rates (40, 60, and 80 ppm). Vena contracta region was imaged using a 3.5 MHz transducer. Pressure and volume in the flow model were kept constant during each experimental condition, as well as ultrasound settings. Results: Blood viscosity variation in the experimental range did not induce significant changes in vena contracta dimensions. Also, vena contracta width did not change from normal to low hematocrit and viscosity levels. A very modest increase only in vena contracta dimension was observed at very high level of blood viscosity when hematocrit was set to 55% . Pump rate, in the evaluated range, did not influence vena contracta width. These results in controlled experimental settings suggest that the vena contracta is an accurate quantitative method for quantifying valvular regurgitation even when this condition is associated with anemia, a frequent finding in patients with valvular heart disease.
Resumo:
The objective of this report is to document the effects of an aerobic training program on myocardial perfusion, and endothelial function abnormalities, and on the relief of angina in a patient with microvascular myocardial ischemia. A 53-year-old female patient exhibited precordial pain on effort and angiographically normal coronaries. Her symptoms had been present for 4 yrs despite pharmacologic treatment for the control of risk factors, with myocardial perfusion scintigraphy revealing an extensive reversible perfusion defect. She was submitted to aerobic training for 4 mos, obtaining significant improvement of the anginal symptoms. Additionally, after the aerobic training program, scintigraphy revealed the disappearance of the myocardial perfusion defect, with a marked improvement of endothelium-dependent vasodilatory response and an improved quality-of-life score. These results suggest that aerobic training can improve endothelial function, leading to a reduction of ischemia and an improved quality-of-life in patients with microvascular myocardial ischemia.
Resumo:
Background The mechanism underlying increased perception of food bolus passage in the absence of esophageal mechanical obstruction has not been completely elucidated. A correlation between the intensity of the symptom and the severity of esophageal dysfunction, either motility (manometry) or bolus transit (impedance) has not been clearly demonstrated. The aim of this study was to analyze the correlation between objective esophageal function assessment (with manometry and impedance) and perception of bolus passage in healthy volunteers (HV) with normal and pharmacologically-induced esophageal hypocontractility, and in patients with gastro-esophageal reflux disease (GERD) with and without ineffective esophageal motility (IEM). Methods Combined manometry-impedance was performed in 10 HV, 19 GERD patients without IEM and nine patients with IEM. Additionally, nine HV were studied after 50 mg sildenafil, which induced esophageal peristaltic failure. Perception of each 5 mL viscous swallow was evaluated using a 5-point scale. Manometry identified hypocontractility (contractions lower than 30 mmHg) and impedance identified incomplete bolus clearance. Key Results In HV and in GERD patients with and without IEM, there was no association between either manometry or impedance and perception on per swallow analysis (OR: 0.842 and OR: 2.017, respectively), as well as on per subject analysis (P = 0.44 and P = 0.16, respectively). Lack of correlation was also found in HV with esophageal hypocontractility induced by sildenafil. Conclusions & Inferences There is no agreement between objective measurements of esophageal function and subjective perception of bolus passage. These results suggest that increased bolus passage perception in patients without mechanical obstruction might be due to esophageal hypersensitivity.
Masticatory muscle function three years after surgical correction of class III dentofacial deformity
Resumo:
Individuals with dentofacial deformities have masticatory muscle changes. The objective of the present study was to determine the effect of interdisciplinary treatment in patients with dentofacial deformities regarding electromyographic activity (EMG) of masticatory muscles three years after surgical correction. Thirteen patients with class III dentofacial deformities were studied, considered as group PI (before surgery) and group P3 (3 years to 3 years and 8 months after surgery). Fifteen individuals with no changes in facial morphology or dental occlusion were studied as controls. The participants underwent EMG examination of the temporal and masseter muscles during mastication and biting. Evaluation of the amplitude interval of EMG activity revealed a difference between P1 and P3 and no difference between P3 and the control group. In contrast, evaluation of root mean square revealed that, in general, P3 values were higher only when compared with PI and differed from the control group. There was an improvement in the EMG activity of the masticatory muscles, mainly observed in the masseter muscle, with values close to those of the control group in one of the analyses.
Resumo:
This study seeks to assess the effect of inspiratory muscle training (IMT) on pulmonary function, respiratory muscle strength, and endurance in morbidly obese patients submitted to bariatric surgery. Thirty patients were randomly assigned to sham muscular training, or to IMT with a threshold device (40% of maximum inspiratory pressure, MIP), for 30 min/day, from the 2nd until 30th postoperative (PO) day. All of them were submitted to a standard respiratory kinesiotherapy and early deambulation protocol. Data on spirometry, maximum static respiratory pressures, and respiratory muscle endurance were collected on the PO days 2, 7, 14, and 30 in a blinded matter. IMT enabled increases in PO MIP and endurance, and an earlier recovery of the spirometry parameters FEV(1), PEF, and FEF(25-75%). Comparing to preoperative values, MIP was increased by 13% at the 30th PO day in the trained group, whereas control group had a reduction of 8%, with higher values for the IMT group (30th PO, IMT-130.6 +/- 22.9 cmH(2)O; controls-112.9 +/- 25.1 cmH(2)O; p < 0.05). Muscular endurance at the 30th PO day was increased in the trained group comparing to preoperative value (61.5 +/- 39.6 s vs 114.9 +/- 55.2 s; p < 0.05), a finding not observed in the control group (81.7 +/- 44.3 vs 95.2 +/- 42.0 s). IMT improves inspiratory muscle strength and endurance and accounts for an earlier recovery of pulmonary airflows in morbidly obese patients submitted to bariatric surgery.
Resumo:
Type 17 helper T (Th17) cells are implicated in the pathogenesis many of human autoimmune diseases. Development of Th17 can be enhanced by the activation of aryl hydrocarbon receptor (AHR) whose ligands include the environmental pollutant dioxin, potentially linking environmental factors to the increased prevalence of autoimmune disease. We report here that nitric oxide (NO) can suppress the proliferation and function of polarized murine and human Th17 cells. NO also inhibits AHR expression in Th17 cells and the downstream events of AHR activation, including IL-22, IL-23 receptor, and Cyp1a1. Conversely, NO did not affect the polarization of Th17 cells from mice deficient in AHR. Furthermore, mice lacking inducible nitric oxide synthase (Nos2(-/-)) developed more severe experimental autoimmune encephalomyelitis than WT mice, with elevated AHR expression, increased IL-17A, and IL-22 synthesis. NO may therefore represent an important endogenous regulator to prevent overexpansion of Th17 cells and control of autoimmune diseases caused by environmental pollutants.
Resumo:
It is well known that regular physical exercise alter cardiac function and autonomic modulation of heart rate variability (HRV). The paraventricular nucleus of hypothalamus (PVN) is an important site of integration for autonomic and cardiovascular responses, where nitric oxide (NO) plays an important role. The aim of our study was to evaluate the cardiovascular parameters and autonomic modulation by means of spectral analysis after nitric oxide synthase (NOS) inhibition in the PVN in conscious sedentary (S) or swimming trained (ST) rats. After swimming training protocol, adult male Wistar rats, instrumented with guide cannulas to PVN and femoral artery and vein catheters were submitted to mean arterial pressure (MAP) and heart rate (HR) recording. At baseline, the physical training induced a resting bradycardia (S: 374 +/- 5, ST: 346 +/- 1 bpm) and promoted adaptations in HRV characterized by an increase in high-frequency oscillations (HF; 26.43 +/- 6.91 to 88.96 +/- 244) and a decrease in low-frequency oscillations (LF; 73.57 +/- 6.91 to 11.04 +/- 2.44) in normalized units. The microinjection of N(omega)-nitro-L-arginine methyl ester (L-NAME) in the PVN of sedentary and trained rats promoted increase in MAP and HR. L-NAME in the PVN did not significantly alter the spectral parameters of HRV of sedentary animals, however in the trained rats increased LF oscillations (11.04 +/- 2.44 to 27.62 +/- 6.97) and decreased HF oscillations (88.96 +/- 2.44 to 72.38 +/- 6.97) in normalized units compared with baseline. Our results suggest that NO in the PVN may collaborate to cardiac autonomic modulation after exercise training. (c) 2010 Elsevier B.V. All rights reserved.
Resumo:
Background. Cisplatin (CP)-induced renal damage is associated with inflammation. Hydrogen sulphide (H(2)S) is involved in models of inflammation. This study evaluates the effect of DL-propargylglycine (PAG), an inhibitor of endogenous H(2)S formation, on the renal damage induced by CP. Methods. The rats were injected with CP (5 mg/kg, i.p.) or PAG(5 mg/kg twice a day, i.p.) for 4 days, starting 1 h before CP injection. Control rats were injected with 0.15 M NaCl or PAG only. Blood and urine samples were collected 5 days after saline or CP injections for renal function evaluation. The kidneys were removed for tumour necrosis factor (TNF)-alpha quantification, histological, immunohistochemical and Western blot analysis. The cystathionine gamma-lyase (CSE) activity and expression were assessed. The direct toxicity of H(2)S in renal tubular cells was evaluated by the incubation of these cells with NaHS, a donor of H(2)S. Results. CP-treated rats presented increases in plasma creatinine levels and in sodium and potassium fractional excretions associated with tubulointerstitial lesions in the outer medulla. Increased expression of TNF-alpha, macrophages, neutrophils and T lymphocytes, associated with increased H(2)S formation rate and CSE expression, were also observed in the outer medulla from CP-injected rats. All these alterations were reduced by treatment with PAG. A direct toxicity of NaHS for renal tubular epithelial cells was not observed. Conclusions. Treatment with PAG reduces the renal damage induced by CP. This effect seems to be related to the H2S formation and the restriction of the inflammation in the kidneys from PAG+CP-treated rats.
Resumo:
Durand MT, Castania JA, Fazan R Jr, Salgado MC, Salgado HC. Hemodynamic responses to aortic depressor nerve stimulation in conscious L-NAME-induced hypertensive rats. Am J Physiol Regul Integr Comp Physiol 300: R418-R427, 2011. First published November 24, 2010; doi: 10.1152/ajpregu.00463.2010.-The present study investigated whether baroreflex control of autonomic function is impaired when there is a deficiency in NO production and the role of adrenergic and cholinergic mechanisms in mediating reflex responses. Electrical stimulation of the aortic depressor nerve in conscious normotensive and nitro-L-arginine methyl ester (L-NAME)-induced hypertensive rats was applied before and after administration of methylatropine, atenolol, and prazosin alone or in combination. The hypotensive response to progressive electrical stimulation (5 to 90 Hz) was greater in hypertensive (-27 +/- 2 to -64 +/- 3 mmHg) than in normotensive rats (-17 +/- 1 to -46 +/- 2 mmHg), whereas the bradycardic response was similar in both groups (-34 +/- 5 to -92 +/- 9 and -21 +/- 2 to -79 +/- 7 beats/min, respectively). Methylatropine and atenolol showed no effect in the hypotensive response in either group. Methylatropine blunted the bradycardic response in both groups, whereas atenolol attenuated only in hypertensive rats. Prazosin blunted the hypotensive response in both normotensive (43%) and hypertensive rats (53%) but did not affect the bradycardic response in either group. Prazosin plus angiotensin II, used to restore basal arterial pressure, provided hemodynamic responses similar to those of prazosin alone. The triple pharmacological blockade abolished the bradycardic response in both groups but displayed similar residual hypotensive response in hypertensive (-13 +/- 2 to -27 +/- 2 mmHg) and normotensive rats (-10 +/- 1 to -25 +/- 3 mmHg). In conclusion, electrical stimulation produced a well-preserved baroreflex-mediated decrease in arterial pressure and heart rate in conscious L-NAME-induced hypertensive rats. Moreover, withdrawal of the sympathetic drive played a role in the reflex bradycardia only in hypertensive rats. The residual fall in pressure after the triple pharmacological blockade suggests the involvement of a vasodilatory mechanism unrelated to NO or deactivation of alpha(1)-adrenergic receptor.
Resumo:
The present study investigated morpho-functional relations of the aortic depressor nerve (ADN) 5, 15 and 120 days after the onset of streptozotocin-induced diabetes in rats. Time control animals received vehicle. Under pentobarbital anesthesia, ADN activity was recorded simultaneously with arterial pressure. After the recordings, nerves were prepared for light microscopy study and morphometry. ADN function was accessed by means of pressure-nerve activity curve (fitted by sigmoidal regression) and cross-spectral analysis between mean arterial pressure (MAP) and ADN activity. The relation between morphological (myelinated fibers number and density, total myelin area, total fiber area and percentage of occupancy) and functional (gain, signal/noise relation, frequency) parameters were accessed by linear regression analysis and correlation coefficient calculations. Functional parameters obtained by means of the sigmoidal regression curve as well as by cross-spectral analysis were similar in diabetic and control rats. Morphometric parameters of the ADN were similar between groups 5 days after the onset of diabetes. Average myelin area and myelinated fiber area were significantly smaller on diabetic rats 15 and 120 days after the onset of diabetes, being the myelinated fiber and respective axons area and diameter also smaller on 120 days group. Nevertheless, G ratio (ratio between axon and fiber diameter) was nearly 0.6 and not different between groups or experimental times. No significant relationship between morphological and functional parameters was detected in all experimental groups. The present study suggests that ADN diabetic neuropathy was time-dependent, with damage to myelinated fibers to be the primary event, not evidenced by physiological methods. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The modulatory effect of nitric oxide/cyclic guanosine monophosphate (NO/cGMP) pathway on sympathetic preganglionic neurons still deserves further investigation. The present study was designed to examine the role of the spinal cord NO/cGMP pathway in controlling mean arterial pressure and heart rate. We observed that intrathecal administration of the NO synthase inhibitor N omega-Nitro-L-arginine methyl ester hydrochloride (L-NAME) causes an increase in mean arterial pressure but does not affect heart rate. Intrathecal administration of the soluble guanylyl cyclase inhibitor 1H-[1,2,4] Oxadiazolo[4,3-a] quinoxalin-1-one (ODQ) does not change mean arterial pressure and heart rate. The precursor for NO synthesis, L-arginine, reduces both mean arterial pressure and heart rate while administration of ODQ before L-arginine impaired decreases in mean arterial pressure and heart rate. Administration of the N-methyl-D-aspartate (NMDA) receptor antagonist DL-2-amino-5-phosphonopentanoic acid (AP5) after L-NAME does not affect increases in mean arterial pressure promoted by NO synthase inhibition. Although the hypotensive and bradycardic responses induced by intrathecal administration of L-arginine depend on cGMP, our results indicate that NO acts to tonically inhibit SPNs, independent of either cGMP or NMDA receptors.
Resumo:
Background/Aims: To evaluate the effects of neonatal handling on hydroelectrolytic balance in adult rats. Methods: The litters were divided into two groups: nonhandled and handled. The procedure consisted of handling the pups for 1 min/day in the first 10 days postnatally. When adults, animals had their body weight verified and were housed in individual metabolic cages. After a 24-hour period, urine samples were collected and the urinary and water intake volumes measured. Blood samples to determine osmolality, aldosterone, corticosterone, angiotensin II, creatinine, urea, sodium and potassium levels were collected. The kidneys were removed for histological assessment. Urinary osmolality, sodium, urea and creatinine were also measured and the creatinine clearance (CC) calculated. Results: No difference between groups was found in the body weight. Handled animals showed a reduction in the total kidney wet weight, water intake, urinary volume, CC, plasma angiotensin II, corticosterone and aldosterone when compared to the nonhandled and an increase in the urinary osmolality and sodium excretion fraction. No differences in serum potassium and no evidence of structural changes were demonstrated by histological analysis. Conclusion: Neonatal handling induced long-lasting effects decreasing renal function without evidence of kidney structural changes. Copyright (c) 2009 S. Karger AG, Basel
Resumo:
Atrial mechanoreceptors, sensitive to stretch, contribute in regulating heart rate and intravascular volume. The information from those receptors reaches the nucleus tractus solitarius and then the paraventricular nucleus (PVN), known to have a crucial role in the regulation of cardiovascular function. Neurons in the PVN synthesize CRF, AVP, and oxytocin (OT). Stimulation of atrial mechanoreceptors was performed in awake rats implanted with a balloon at the junction of the superior vena cava and right atrium. Plasma ACTH, AVP, and OT concentrations and Fos, CRF, AVP, and OT immunolabeling in the PVN were determined after balloon inflation in hydrated and water-deprived rats. The distension of the balloon increased the plasma ACTH concentrations, which were higher in water-deprived than in hydrated rats (P < 0.05). In addition, the distension in the water-deprived group decreased plasma AVP concentrations (P < 0.05), compared with the respective control group. The distension increased the number of Fos- and double-labeled Fos/CRF neurons in the parvocellular PVN, which was higher in the water-deprived than in the hydrated group (P < 0.01). There was no difference in the Fos expression in magnocellular PVN neurons after distension in hydrated and water-deprived groups, compared with respective controls. In conclusion, parvocellular CRF neurons showed an increase of Fos expression induced by stimulation of right atrial mechanoreceptors, suggesting that CRF participates in the cardiovascular reflex adjustments elicited by volume loading. Activation of CRF neurons in the PVN by cardiovascular reflex is affected by osmotic stimulation.