931 resultados para radiofrecuencia térmica


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lubricant is responsible for reducing the wear on the friction protect the metal against oxidation, corrosion and dissipates excess heat, making it essential for the balance of a mechanical system, consequently prolonging the useful life of such a system. The origin of lubricating oils is usually mineral being extracted from the petroleum. But the search for a new source of production of lubricants and fuels it is necessary to meet future demands and reduce the possible environmental damage. For this reason, looking alternative means to produce certain products derived from petroleum, such as biodiesel, for example. Returning to the realm of lubricants, also one realizes this need for new raw materials for their production. Vegetable oil is a renewable resource and biodegradable, and its use entails advantages in environmental, social and economic. The development of this project aims to characterize the carnauba oil as a lubricant plant, or biolubricant. To analyze the oil carnauba tests as checking density, flash point, fire point, viscosity, viscosity, acid number, pH, copper corrosion, thermal conductivity and thermal resistivity were developed. In addition, for conducting the wear on the friction and the gradient of the system temperature, the analysis equipment is designed for wear on the friction. Based on these results, it is observed that the oil carnauba show good correlation to its application as biolubricant

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thermal insulation is used to protect the heated or cooled surfaces by the low thermal conductivity materials. The rigid ricin polyurethane foams (PURM) are used for thermal insulation and depend on the type and concentration of blowing agent. Obtaining PURM occurs by the use of polyol, silicone, catalyst and blowing agent are pre -mixed, reacting with the isocyanate. The glass is reusable, returnable and recyclable heat insulating material, whose time of heat dissipation determines the degree of relaxation of its structure; and viscosity determines the conditions for fusion, operating temperatures, annealing, etc. The production of PURM composites with waste glass powder (PV) represents economical and renewable actions of manufacturing of thermal insulating materials. Based on these aspects, the study aimed to produce and characterize the PURM composites with PV, whose the mass percentages were 5, 10, 20, 30, 40 and 50 wt%. PURM was obtained commercially, while the PV was recycled from the tailings of the stoning process of a glassmaking; when the refining process was applied to obtain micrometer particles. The PURM + PV composites were studied taking into account the standard sample of pure PURM and the influence of the percentage of PV in this PURM matrix. The results of the chemical, physical and morphological characterization were discussed taking into account the difference in the microstructural morphology of the PURM+PV composites and the pure PURM, as well the results of the physicochemical, mechanical e thermophysical tests by values obtained of density, hardness, compressive strength, specific heat, thermal conductivity and diffusivity. In general, the structure of pure PURM showed large, elongated and regular pores, while PURM+PV composites showed irregular, small and rounded pores with shapeless cells. This may have contributed to reducing their mechanical strength, especially for PURM - PV50. The hardness and density were found to have a proportional relationship with the PV content on PURM matrix. The specific heat, thermal diffusivity and thermal conductivity showed proportional relationship to each other. So, this has been realized that the increasing the PV content on PURM matrix resulted in the rise of diffusivity and thermal conductivity and the decrease of the specific heat. However, the values obtained by the PURM composites were similar the values of pure PURM, mainly the PURM-PV5 and PURM-PV10. Therefore, these composites can be applied like thermal insulator; furthermore, their use could reduce the production costs and to preserve the environment

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Visando a obtenção de um tratamento para acelerar a germinação de sementes de Desmodium tortuosum (Sw.) DC., foram realizados dois experimentos, nos quais, segmentos unisseminados de lomentos (testemunha) foram submetidos a debulha manual; debulha manual seguida por escarificação manual empregando-se lixa n. 220; debulha mecânica (processador doméstico ); escarificação química com H2SO4 (95%) por 1,5 e 8 mim pré-aquecimento à 53°C por 4,10 e 16h em estufa com circulação forçada de ar; embebição, utilizando-se H,0 à 80°C por 1,3,5 e 10 min; H20 à 27°C por 2h e embebição com alternância térmica (H,0 à 80°C/ 5min e H20 à 13 °C / 1min) . Para a avaliação dos tratamentos foram empregados os testes de germinação, de emergência de plântulas em solo (E), de primeira contagem de germinação (PG) e de emergência (PE), índices de velocidade de germinação (I.V.G.) e de emergência (I.V.E.), e o comprimento de plântulas (CP). 0 delineamento estatístico adotado foi o inteiramente casualizado com 4 repetições de 100 (G, PG, I.V.G.) ou 20 sementes (C P) por tratamento no primeiro experimento e 4 repetições de 50 (G, PG, I.V.G.) ou 100 sementes (E, PE, I.V.E.) no segundo experimento. No primeiro experimento, os tratamentos que provocaram significativa redução da dormência (D) e, conseqüente elevação da germinação (G), em comparação à testemunha (D=82%; G=15%) foram, em ordem decrescente de eficácia: debulha e escarificação manuais (D=3%; G= 92%), debu lha mecânica (D=13%; G= 81%), embebição em H20 à 80°C por 1min (D=68%; G= 29%) e por 3 min (D=65%; G=32%). No segundo experimento, (testemunha com D=93% e G=3%) destacaram-se: debulha e escarificação manuais (D=2%; G= 93%), debulha mecânica (D = 2%; G = 87%), embebição em H20 à 80°C por 5min e alternância térmica (ambos com D=85% e G= 11%). 0s testes de vigor PC, I.V. G., I.V. E., CP, e E corroboraram esses resultados. 0s métodos de escarificação manual com lixa 220 e debulha mecânica, empregando-se processa dor, podem ser recomendados para a superação da dormência e promoção da germinação de sementes de D. tortuosum.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nowadays, the growing environmental worry leads research the focus the application of alternative materials from renewable resources on the industrial process. The most common vegetable oil extractant using around the world is the hexane, a petroleum derived, toxic and flammable. Based on this fact, the goal of this work was to test vegetable oil extractions from sunflower seeds cultivated on the Rio Grande do Norte State using two extraction process, the mechanical expelling and solvent extraction, this one using hexane and ethanol as a alternative solvent. The solvent extractions were carried out in the Soxhlet extractor in three different extraction times (4, 6, and 8 hours). The effect of solvent and extraction time was evaluated. The mechanical extraction was carried out in a expeller and the sunflower oil obtained was characterized by its physical-chemical properties and compared with sunflower refinery oil. Furthermore this work also explored the pyrolysis reaction carried out by thermogravimetry measurement as alternative route to obtain biofuel. For this purpose the oil samples were heated to ambient temperature until 900°C in heating rate of 5, 10, 20ºC min-1 with the objective evaluated the kinetics parameters such activation energy and isoconversion. The TG/DTG curves show the thermal profile decomposition of triglycerides. The curves also showed that antioxidant presents on the refinery oil not influence on the thermal stability of sunflower oil. The total yield of the extraction s process with hexane and ethanol solvent were compared, and the results indicated that the extraction with ethanol were more efficient. The pyrolysis reaction results indicated that the use of unpurified oil required less energy to obtain the bio-oil

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Actually, surveys have been developed for obtaining new materials and methodologies that aim to minimize environmental problems due to discharges of industrial effluents contaminated with heavy metals. The adsorption has been used as an alternative technology effectively, economically viable and potentially important for the reduction of metals, especially when using natural adsorbents such as certain types of clay. Chitosan, a polymer of natural origin, present in the shells of crustaceans and insects, has also been used for this purpose. Among the clays, vermiculite is distinguished by its good ion exchange capacity and in its expanded form enhances its properties by greatly increasing its specific surface. This study aimed to evaluate the functionality of the hybrid material obtained through the modification of expanded vermiculite with chitosan in the removal of lead ions (II) in aqueous solution. The material was characterized by infrared spectroscopy (IR) in order to evaluate the efficiency of modification of matrix, the vermiculite, the organic material, chitosan. The thermal stability of the material and the ratio clay / polymer was evaluated by thermogravimetry. To evaluate the surface of the material was used in scanning electron microscopy (SEM) and (BET). The BET analysis revealed a significant increase in surface area of vermiculite that after interaction with chitosan, was obtained a value of 21, 6156 m2 / g. Adsorption tests were performed according to the particle size, concentration and time. The results show that the capacity of removal of ions through the vermiculite was on average 88.4% for lead in concentrations ranging from 20-200 mg / L and 64.2% in the concentration range of 1000 mg / L. Regarding the particle size, there was an increase in adsorption with decreasing particle size. In fuction to the time of contact, was observed adsorption equilibrium in 60 minutes with adsorption capacity. The data of the isotherms were fitted to equation Freundlich. The kinetic study of adsorption showed that the pseudo second- order model best describes the adsorption adsorption, having been found following values K2=0,024 g. mg-1 min-1and Qmax=25,75 mg/g, value very close to the calculated Qe = 26.31 mg / g. From the results we can conclude that the material can be used in wastewater treatment systems as a source of metal ions adsorbent due to its high adsorption capacity

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Anhydrous ethanol is used in chemical, pharmaceutical and fuel industries. However, current processes for obtaining it involve high cost, high energy demand and use of toxic and pollutant solvents. This problem occurs due to the formation of an azeotropic mixture of ethanol + water, which does not allow the complete separation by conventional methods such as simple distillation. As an alternative to currently used processes, this study proposes the use of ionic liquids as solvents in extractive distillation. These are organic salts which are liquids at low temperatures (under 373,15 K). They exhibit characteristics such as low volatility (almost zero/ low vapor ), thermal stability and low corrosiveness, which make them interesting for applications such as catalysts and as entrainers. In this work, experimental data for the vapor pressure of pure ethanol and water in the pressure range of 20 to 101 kPa were obtained as well as for vapor-liquid equilibrium (VLE) of the system ethanol + water at atmospheric pressure; and equilibrium data of ethanol + water + 2-HDEAA (2- hydroxydiethanolamine acetate) at strategic points in the diagram. The device used for these experiments was the Fischer ebulliometer, together with density measurements to determine phase compositions. The experimental data were consistent with literature data and presented thermodynamic consistency, thus the methodology was properly validated. The results were favorable, with the increase of ethanol concentration in the vapor phase, but the increase was not shown to be pronounced. The predictive model COSMO-SAC (COnductor-like Screening MOdels Segment Activity Coefficient) proposed by Lin & Sandler (2002) was studied for calculations to predict vapor-liquid equilibrium of systems ethanol + water + ionic liquids at atmospheric pressure. This is an alternative for predicting phase equilibrium, especially for substances of recent interest, such as ionic liquids. This is so because no experimental data nor any parameters of functional groups (as in the UNIFAC method) are needed

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polymer particles in the nanometer range are of fundamental interest today, especially when used as carrier systems in the controlled release of drugs, cosmetics and nutraceuticals, as well as in coating materials with magnetic properties. The main objective of the present study concerns the production of submicron particles of poly (methyl methacrylate) (PMMA) by crystallization of a polymer solution by thermally controlled cooling. In this work, PMMA solutions in ethanol and 1-propanol were prepared at different concentrations (1% to 5% by weight) and crystallized at different cooling rates (0.2 to 0.8 ° C / min) controlled linearly. Analysis of particle size distribution (DLS / CILAS) and scanning electron microscopy (SEM) were performed in order to evaluate the morphological characteristics of the produced particles. The results demonstrated that it is possible to obtain submicron polymer perfectly spherical particles using the technique discussed in this study. It was also observed that, depending on the cooling rate and the concentration of the polymer solution, it is possible to achieve high yield in the formation of submicron particles. In addition, preliminary tests were performed in order to verify the ability of this technique to form particulated carrier material with magnetic properties. The results showed that the developed technique can be an interesting alternative to obtain polymer particles with magnetic properties

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The composition of petroleum may change from well to well and its resulting characteristics influence significantly the refine products. Therefore, it is important to characterize the oil in order to know its properties and send it adequately for processing. Since petroleum is a multicomponent mixture, the use of synthetic mixtures that are representative of oil fractions provides a better understand of the real mixture behavior. One way for characterization is usually obtained through correlation of physico-chemical properties of easy measurement, such as density, specific gravity, viscosity, and refractive index. In this work new measurements were obtained for density, specific gravity, viscosity, and refractive index of the following binary mixtures: n-heptane + hexadecane, cyclohexane + hexadecane, and benzene + hexadecane. These measurements were accomplished at low pressure and temperatures in the range 288.15 K to 310.95 K. These data were applied in the development of a new method of oil characterization. Furthermore, a series of measurements of density at high pressure and temperature of the binary mixture cyclohexane + n-hexadecane were performed. The ranges of pressure and temperature were 6.895 to 62.053 MPa and 318.15 to 413.15 K, respectively. Based on these experimental data of compressed liquid mixtures, a thermodynamic modeling was proposed using the Peng-Robinson equation of state (EOS). The EOS was modified with scaling of volume and a relatively reduced number of parameters were employed. The results were satisfactory demonstrating accuracy not only for density data, but also for isobaric thermal expansion and isothermal compressibility coefficients. This thesis aims to contribute in a scientific manner to the technological problem of refining heavy fractions of oil. This problem was treated in two steps, i.e., characterization and search of the processes that can produce streams with economical interest, such as solvent extraction at high pressure and temperature. In order to determine phase equilibrium data in these conditions, conceptual projects of two new experimental apparatus were developed. These devices consist of cells of variable volume together with a analytical static device. Therefore, this thesis contributed with the subject of characterization of hydrocarbons mixtures and with development of equilibrium cells operating at high pressure and temperature. These contributions are focused on the technological problem of refining heavy oil fractions

Relevância:

10.00% 10.00%

Publicador:

Resumo:

O objetivo deste trabalho foi caracterizar e relacionar a radiação líquida com o calor latente equivalente, em mm de água, nos cultivos protegido e de campo, na cultura de pimentão. O experimento foi feito em Botucatu, SP. A estimativa do fluxo de calor latente foi feita pelo método do balanço de energia, por meio da razão de Bowen. Foram feitas medidas instantâneas da radiação líquida (Rn), dos fluxos convectivos de calor latente (LE) e sensível (H), do fluxo de calor no solo (G), e dos gradientes psicrométricos sobre a cultura. O cultivo protegido, apesar de receber menor quantidade de radiação solar global, foi mais eficiente na conversão da radiação líquida disponível em matéria seca total e na produtividade de frutos. No balanço de energia, o cultivo protegido apresentou razões G/Rn e LE/Rn inferiores e H/Rn superior, com um fluxo de calor latente, equivalente em milímetros, 45,43% menor que no cultivo no campo. Apresentou, ainda, menor quantidade de radiação líquida disponível e menores perdas de energia, mostrando-se mais eficiente no uso da água.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The high concentration of residual oil is one of the greatest problems found in petroleum mature fields. In these reservoirs, different enhanced oil recovery methods (EOR) can be used, highlighting the microemulsion injection. The microemulsion has showed to be efficient in petroleum recovery due to its ability to promote an efficient displacement of the petroleum, acting directly in the residual oil. In this way, this research has as objective the study of microemulsion systems obtained using a commercial surfactant (TP), determining microemulsion thermal stabilities and selecting points inside the pseudoternary phases diagram, evaluating its efficiencies and choosing the best system, that has the following composition: TP as surfactant (S), isopropyl alcohol as co-surfactant (C), kerosene as oil phase, water as aqueous phase, C/S ratio = 1, and 5% sodium p-toluenesulfonate as hydrotope; being observed the following parameters for the selection of the best pseudoternary phases diagram: C/S ratio, co-surfactant nature and addition of hydrotope to the system. The efficiency in petroleum recovery was obtained using two sandstone formation systems: Assu and Botucatu. The study of thermal stabilities showed that as the concentration of active matter in the system increased, the thermal stability also increased. The best thermal stability was obtained using point F (79.56 0C). The system that presented the best recovery percentile between the three selected (3) was composed by: 70% C/S, 2% kerosene and 28% water, with 94% of total recovery efficiency and 60% with microemulsion injection, using the Botucatu formation, that in a general way presented greater efficiencies as compared with the Assu one (81.3% of total recovery efficiency and 38.3% with microemulsion injection)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study were projected, built and tested an electric solar dryer consisting of a solar collector, a drying chamber, an exhaust fan and a fan to promote forced hot air convection. Banana drying experiments were also carried out in a static column dryer to model the drying and to obtain parameters that can be used as a first approximation in the modeling of an electric solar dryer, depending on the similarity of the experimental conditions between the two drying systems. From the banana drying experiments conducted in the static column dryer, we obtained food weight data as a function of aqueous concentration and temperature. Simplified mathematical models of the banana drying were made, based on Fick s and Fourier s second equations, which were tested with the experimental data. We determined and/or modeled parameters such as banana moisture content, density, thin layer drying curves, equilibrium moisture content, molecular diffusivity of the water in banana DAB, external mass transfer coefficient kM, specific heat Cp, thermal conductivity k, latent heat of water evaporation in the food Lfood, time to heat food, and minimum energy and power required to heat the food and evaporate the water. When we considered the shrinkage of radius R of a banana, the calculated values of DAB and kM generally better represent the phenomenon of water diffusion in a solid. The latent heat of water evaporation in the food Lfood calculated by modeling is higher than the latent heat of pure water evaporation Lwater. The values calculated for DAB and KM that best represent the drying were obtained with the analytical model of the present paper. These values had good agreement with those assessed with a numeric model described in the literature, in which convective boundary condition and food shrinkage are considered. Using parameters such as Cp, DAB, k, kM and Lfood, one can elaborate the preliminary dryer project and calculate the economy using only solar energy rather than using solar energy along with electrical energy

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective of this study was to produce biofuels (bio-oil and gas) from the thermal treatment of sewage sludge in rotating cylinder, aiming industrial applications. The biomass was characterized by immediate and instrumental analysis (elemental analysis, scanning electron microscopy - SEM, X-ray diffraction, infrared spectroscopy and ICP-OES). A kinetic study on non-stationary regime was done to calculate the activation energy by Thermal Gravimetric Analysis evaluating thermochemical and thermocatalytic process of sludge, the latter being in the presence of USY zeolite. As expected, the activation energy evaluated by the mathematical model "Model-free kinetics" applying techniques isoconversionais was lowest for the catalytic tests (57.9 to 108.9 kJ/mol in the range of biomass conversion of 40 to 80%). The pyrolytic plant at a laboratory scale reactor consists of a rotating cylinder whose length is 100 cm with capable of processing up to 1 kg biomass/h. In the process of pyrolysis thermochemical were studied following parameters: temperature of reaction (500 to 600 ° C), flow rate of carrier gas (50 to 200 mL/min), frequency of rotation of centrifugation for condensation of bio-oil (20 to 30 Hz) and flow of biomass (4 and 22 g/min). Products obtained during the process (pyrolytic liquid, coal and gas) were characterized by classical and instrumental analytical techniques. The maximum yield of liquid pyrolytic was approximately 10.5% obtained in the conditions of temperature of 500 °C, centrifugation speed of 20 Hz, an inert gas flow of 200 mL/min and feeding of biomass 22 g/min. The highest yield obtained for the gas phase was 23.3% for the temperature of 600 °C, flow rate of 200 mL/min inert, frequency of rotation of the column of vapor condensation 30 Hz and flow of biomass of 22 g/min. The non-oxygenated aliphatic hydrocarbons were found in greater proportion in the bio-oil (55%) followed by aliphatic oxygenated (27%). The bio-oil had the following characteristics: pH 6.81, density between 1.05 and 1.09 g/mL, viscosity between 2.5 and 3.1 cSt and highest heating value between 16.91 and 17.85 MJ/ kg. The main components in the gas phase were: H2, CO, CO2 and CH4. Hydrogen was the main constituent of the gas mixture, with a yield of about 46.2% for a temperature of 600 ° C. Among the hydrocarbons formed, methane was found in higher yield (16.6%) for the temperature 520 oC. The solid phase obtained showed a high ash content (70%) due to the abundant presence of metals in coal, in particular iron, which was also present in bio-oil with a rate of 0.068% in the test performed at a temperature of 500 oC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

One of the waste generated during the drilling of oil wells are gravel which are impregnated of drilling fluid. This residue consists of highly toxic chemicals, including toxic metals. This study suggests an alternative process to the treatment of this waste, by incorporating it the form of raw material in the ceramic matrix , and by solidification and stabilize the metals present, Aluminum (Al), Iron (Fe), Manganese (Mn) and Zinc (Zn). The raw materials were characterized by the techniques of X ray fluorescence (FRX), X ray diffraction (DRX), laser granulometry (GL), thermogravimetry (TG) and differential thermal analysis (ADT). To evaluate the percentage of gravel effect the environmental and technological properties were obtained from formulations containing 0, 10 and 20 % by weight of gravel in the ceramic matrix. After sintering at temperatures 1080, 1120 and 1160 °C, the samples were tested for water absorption, the linear shrinkage firing, voltage of rupture and solubility. The results obtained showed that the stabilization by solidification, is a viable alternative to safe disposal of waste drilling. Ceramics products can be used in the manufacture of solid bricks

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The growing utilization of surfactants in several different areas of industry has led to an increase on the studies involving solutions containing this type of molecules. Due to its amphiphilic nature, its molecule presents one polar part and one nonpolar end, which easily interacts with other molecules, being able to modify the media properties. When the concentration in which its monomers are saturated, the airliquid system interface is reached, causing a decrease in interfacial tension. The surfactants from pure fatty acids containing C8, C12 and C16 carbonic chains were synthesized in an alcoholic media using sodium hydroxide. They were characterized via thermal analysis (DTA and DTG) and via infrared spectroscopy, with the intention of observing their purity. Physical and chemical properties such as superficial tension, critical micelle concentration (c.m.c), surfactant excess on surface and Gibbs free energy of micellization were determined in order to understand the behaviour of these molecules with an aqueous media. Pseudo-ternary phase diagrams were obtained aiming to limit the Windsor equilibria conditions so it could be possible to understand how the surfactants carbonic chain size contributes to the microemulsion region. Solutions with known concentrations were prepared to study how the surfactants can influence the dynamic light scattering spectroscopy (DLS) and how the diffusion coefficient is influenced when the media concentration is altered. The results showed the variation on the chain size of the studied surfactant lipophilic part allows the conception of surfactants with similar interfacial properties, but dependent on the size of the lipophilic part of the surfactant. This variation causes the surfactant to have less tendency of microemulsionate oil in water. Another observed result is that the n-alcanes molecule size promoted a decrease on the microemulsion region on the obtained phase diagrams

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present work has as objective the knowledge of the process of drying of the cephalothorax of shrimp to give support the industry to make possible the use of this byproduct. In this sense, the process conditions in this tray dryer and spouted bed were analyzed. With these results, it was projected and constructs a dryer with specific characteristics for the drying of the cephalothorax. The desorption isotherms were obtained by the dynamic method in the temperatures of 20, 35 and 50º C and in the interval of 10-90% of relative humidity. It was observed that the product in form of powder can be conserved with larger stability for lower relative humidity to 40%. The curves of drying of the dryer of fixed bed were adjusted for the models: single exponential, biparametric exponential and Page. The model biparametric exponential more adequately described all the drying conditions studied. The tests carry out in spouted bed showed high drying rate for the material in the paste form in beds active dynamicly-fluid, provely the necessity of a feeding in shorter intervals of time to increase the thermal efficiency of the process. The projected dryer, be considered the obtained results, it was a rotary dryer with inert bed, feed co-current, discharge in cyclone to take place the separation gas-solid, and feed carry out in intervals of 2 minutes. The optimization of the equipment projected it was accomplished used the complete factorial experimental design 24, this had as independent variables temperature velocity of the air, feed flow rate and encapsulated concentration (albumin), as variables answers the thermal efficiency, the moisture content of obtained powder, total time of test and the efficiency of production of powder in several points of processing. The results showed that the rotary dryer with inert bed can present, also, good results if applied industrially