949 resultados para rRNA 16S


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microorganisms in the plant rhizosphere, the zone under the influence of roots, and phyllosphere, the aboveground plant habitat, exert a strong influence on plant growth, health, and protection. Tomatoes and cucumbers are important players in produce safety, and the microbial life on their surfaces may contribute to their fitness as hosts for foodborne pathogens such as Salmonella enterica and Listeria monocytogenes. External factors such as agricultural inputs and environmental conditions likely also play a major role. However, the relative contributions of the various factors at play concerning the plant surface microbiome remain obscure, although this knowledge could be applied to crop protection from plant and human pathogens. Recent advances in genomic technology have made investigations into the diversity and structure of microbial communities possible in many systems and at multiple scales. Using Illumina sequencing to profile particular regions of the 16S rRNA gene, this study investigates the influences of climate and crop management practices on the field-grown tomato and cucumber microbiome. The first research chapter (Chapter 3) involved application of 4 different soil amendments to a tomato field and profiling of harvest-time phyllosphere and rhizosphere microbial communities. Factors such as water activity, soil texture, and field location influenced microbial community structure more than soil amendment use, indicating that field conditions may exert more influence on the tomato microbiome than certain agricultural inputs. In Chapter 4, the impact of rain on tomato and cucumber-associated microbial community structures was evaluated. Shifts in bacterial community composition and structure were recorded immediately following rain events, an effect which was partially reversed after 4 days and was strongest on cucumber fruit surfaces. Chapter 5 focused on the contribution of insect visitors to the tomato microbiota, finding that insects introduced diverse bacterial taxa to the blossom and green tomato fruit microbiome. This study advances our understanding of the factors that influence the microbiomes of tomato and cucumber. Farms are complex environments, and untangling the interactions between farming practices, the environment, and microbial diversity will help us develop a comprehensive understanding of how microbial life, including foodborne pathogens, may be influenced by agricultural conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Traditionally, microbial surveys investigating the effect of chronic anthropogenic pressure such as polyaromatic hydrocarbons (PAHs) contaminations consider just the alpha and beta diversity and ignore the interactions among the different taxa forming the microbial community. Here, we investigated the ecological relationships between the three domains of life (i.e., Bacteria, Archaea, and Eukarya) using 454 pyrosequencing on the 16S rRNA and 18S rRNA genes from chronically impacted and pristine sediments, along the coasts of the Mediterranean Sea (Gulf of Lion, Vermillion coast, Corsica, Bizerte lagoon and Lebanon) and the French Atlantic Ocean (Bay of Biscay and English Channel). Our approach provided a robust ecological framework for the partition of the taxa abundance distribution into 859 core Operational taxonomic units (OTUs) and 6629 satellite OTUs. OTUs forming the core microbial community showed the highest sensitivity to changes in environmental and contaminant variations, with salinity, latitude, temperature, particle size distribution, total organic carbon (TOC) and PAH concentrations as main drivers of community assembly. The core communities were dominated by Gammaproteobacteria and Deltaproteobacteria for Bacteria, by Thaumarchaeota, Bathyarchaeota and Thermoplasmata for Archaea and Metazoa and Dinoflagellata for Eukarya. In order to find associations among microorganisms, we generated a co-occurrence network in which PAHs were found to impact significantly the potential predator – prey relationship in one microbial consortium composed of ciliates and Actinobacteria. Comparison of network topological properties between contaminated and non-contaminated samples showed substantial differences in the network structure and indicated a higher vulnerability to environmental perturbations in the contaminated sediments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: Staphylococcus aureus is the causative agent of many infections and the advent MRSA has drawn much attention to it. However, some organisms have been noted to be wrongly identified as S. aureus through phenotypic identifications leading to wrong treatment of infections. This study is therefore undertaken to evaluate the rate of false identification of other organisms as S. aureus in Southern Nigeria. Methods: 507 microorganisms which have been previously identified as S. aureus in 8 States in Southern Nigeria through characteristic morphology on blood agar, Gram staining, growth and fermentation on Mannitol Salt Agar and coagulase formation were collected. All the isolates were identified in this study through sequencing of 16S rRNA and detection of spa gene. The percentages of true and false identities were determined. Results: Of the 507 isolates previously identified as S. aureus, only 54 (11 %) were confirmed as S. aureus while the rest were coagulase negative Staphylococci (85 % misidentification rate), Bacillus sp. (12 % misidentification rate), and Brevibacterium sp. (3 % misidentification rate). Conclusion: A high rate of false positive identification of S. aureus which could lead to the misuse of antibiotics in emergency situation has been identified in this study. The use of standard methods for the identification of S. aureus at all times is highly recommended.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The giant river prawn, Macrobrachium cf. rosenbergii, is one of the most cultivated freshwater prawns in the world and has been introduced into more than 40 countries. In some countries, this prawn is considered an invasive species that requires close monitoring. Recent changes in the taxonomy of this species (separation of M. rosenbergii and M. dacqueti) require a re-evaluation of introduced taxa. In this work, molecular analyses were used to determine which of these two species was introduced into Brazil and to establish the geographic origin of the introduced populations that have invaded Amazonian coastal waters. The species introduced into Brazil was M. dacqueti through two introduction events involving prawns originating from Vietnam and either Bangladesh or Thailand. These origins differ from historical reports of the introductions and underline the need to confirm the origin of other exotic populations around the world. The invading populations in Amazonia require monitoring not only because the biodiversity of this region may be affected by the introduction, but also because admixture of different native haplotypes can increase the genetic variability and the likelihood of persistence of the invading species in new habitats.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Globally, peatlands occupy a small portion of terrestrial land area but contain up to one-third of all soil organic carbon. This carbon pool is vulnerable to increased decomposition under projected climate change scenarios but little is known about how plant functional groups will influence microbial communities responsible for regulating carbon cycling processes. Here we examined initial shifts in microbial community structure within two sampling depths under plant functional group manipulations in mesocosms of an oligotrophic bog. Microbial community composition for bacteria and archaea was characterized using targeted 16S rRNA Illumina gene sequencing. We found statistically distinct spatial patterns between the more shallow 10-20 cm sampling depth and the deeper 30-40 cm depth. Significant effects by plant functional groups were found only within the 10-20 cm depth, indicating plant-mediated microbial community shifts respond more quickly near the peat surface. Specifically, the relative abundance of Acidobacteria decreased under ericaceous shrub treatments in the 10-20 cm depth and was replaced by increased abundance of Gammaproteobacteria and Bacteroidetes. In contrast, the sedge rhizosphere continued to be dominated by Acidobacteria but also promoted an increase in the relative recovery of Alphaproteobacteria and Verrucomicrobia. These initial results suggest microbial communities under ericaceous shrubs may be limited by anaerobic soil conditions accompanying high water table conditions, while sedge aerenchyma may be promoting aerobic taxa in the upper peat rhizosphere regardless of ambient soil oxygen limitations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Five strains (1126-1H-08(T), 51B-09, 986-08, 1084B-08 and 424-08) were isolated from diseased rainbow trout. Cells were Gram-negative rods, 0.7 µm wide and 3 µm long, non-endospore-forming, catalase and oxidase positive. Colonies were circular, yellow-pigmented, smooth and entire on TGE agar after 72 hours incubation at 25°C. They grew in a temperature range between 15°C to 30°C, but they did not grow at 37°Cor 42°C. Based on 16S rRNA gene sequence analysis, the isolates belonged to the genus Flavobacterium. Strain 1126-1H-08(T) exhibited the highest levels of similarity with Flavobacterium oncorhynchi CECT 7678(T) and Flavobacterium pectinovorum DSM 6368(T) (98.5% and 97.9% sequence similarity, respectively). DNA-DNA hybridization values were 87 to 99% among the five isolates and ranged from 21 to 48% between strain 1126-1H-08(T), selected as a representative isolate, and the type strains of Flavobacterium oncorhynchi CECT 7678(T) and other phylogenetic related Flavobacterium species. The DNA G+C content of strain 1126-1H-08(T) was 33.2 mol%. The predominant respiratory quinone was MK-6 and the major fatty acids were iso-C15∶0 and C15∶0. These data were similar to those reported for Flavobacterium species. Several physiological and biochemical tests differentiated the novel bacterial strains from related Flavobacterium species. Phylogenetic, genetic and phenotypic data indicate that these strains represent a new species of the genus Flavobacterium, for which the name Flavobacterium plurextorum sp. nov. was proposed. The type strain is 1126-1H-08(T) ( = CECT 7844(T) = CCUG 60112(T)).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Arm/Rmt methyltransferases have emerged recently in pathogenic bacteria as enzymes that confer high-level resistance to 4,6-disubstituted aminoglycosides through methylation of the G1405 residue in the 16S rRNA (like ArmA and RmtA to -E). In prokaryotes, nucleotide methylations are the most common type of rRNA modification, and they are introduced posttranscriptionally by a variety of site-specific housekeeping enzymes to optimize ribosomal function. Here we show that while the aminoglycoside resistance methyltransferase RmtC methylates G1405, it impedes methylation of the housekeeping methyltransferase RsmF at position C1407, a nucleotide that, like G1405, forms part of the aminoglycoside binding pocket of the 16S rRNA. To understand the origin and consequences of this phenomenon, we constructed a series of in-frame knockout and knock-in mutants of Escherichia coli, corresponding to the genotypes rsmF(+), ΔrsmF, rsmF(+) rmtC(+), and ΔrsmF rmtC(+). When analyzed for the antimicrobial resistance pattern, the ΔrsmF bacteria had a decreased susceptibility to aminoglycosides, including 4,6- and 4,5-deoxystreptamine aminoglycosides, showing that the housekeeping methylation at C1407 is involved in intrinsic aminoglycoside susceptibility in E. coli. Competition experiments between the isogenic E. coli strains showed that, contrary to expectation, acquisition of rmtC does not entail a fitness cost for the bacterium. Finally, matrix-assisted laser desorption ionization (MALDI) mass spectrometry allowed us to determine that RmtC methylates the G1405 residue not only in presence but also in the absence of aminoglycoside antibiotics. Thus, the coupling between housekeeping and acquired methyltransferases subverts the methylation architecture of the 16S rRNA but elicits Arm/Rmt methyltransferases to be selected and retained, posing an important threat to the usefulness of aminoglycosides worldwide.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The 16S rRNA methyltransferase ArmA is a worldwide emerging determinant that confers high-level resistance to most clinically relevant aminoglycosides. We report here the identification and characterization of a multidrug-resistant Salmonella enterica subspecies I.4,12:i:- isolate recovered from chicken meat sampled in a supermarket on February 2009 in La Reunion, a French island in the Indian Ocean. Susceptibility testing showed an unusually high-level resistance to gentamicin, as well as to ampicillin, expanded-spectrum cephalosporins and amoxicillin-clavulanate. Molecular analysis of the 16S rRNA methyltransferases revealed presence of the armA gene, together with bla(TEM-1), bla(CMY-2), and bla(CTX-M-3). All of these genes could be transferred en bloc through conjugation into Escherichia coli at a frequency of 10(-5) CFU/donor. Replicon typing and S1 pulsed-field gel electrophoresis revealed that the armA gene was borne on an ~150-kb broad-host-range IncP plasmid, pB1010. To elucidate how armA had integrated in pB1010, a PCR mapping strategy was developed for Tn1548, the genetic platform for armA. The gene was embedded in a Tn1548-like structure, albeit with a deletion of the macrolide resistance genes, and an IS26 was inserted within the mel gene. To our knowledge, this is the first report of ArmA methyltransferase in food, showing a novel route of transmission for this resistance determinant. Further surveillance in food-borne bacteria will be crucial to determine the role of food in the spread of 16S rRNA methyltransferase genes worldwide.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Eighteen Corynebacterium xerosis strains isolated from different animal clinical specimens were subjected to phenotypic and molecular genetic studies. On the basis of the results of the biochemical characterization, the strains were tentatively identified as C. xerosis. Phylogenetic analysis based on comparative analysis of the sequences of 16S rRNA and rpoB genes revealed that the 18 strains were highly related to C. xerosis, C. amycolatum, C. freneyi, and C. hansenii. There was a good concordance between 16S rRNA and partial rpoB gene sequencing results, although partial rpoB gene sequencing allowed better differentiation of C. xerosis. Alternatively, C. xerosis was also differentiated from C. freneyi and C. amycolatum by restriction fragment length polymorphism analysis of the 16S-23S rRNA gene intergenic spacer region. Phenotypic characterization indicated that besides acid production from D-turanose and 5-ketogluconate, 90% of the strains were able to reduce nitrate. The absence of the fatty acids C(14:0), C(15:0), C(16:1)omega 7c, and C(17:1)omega 8c can also facilitate the differentiation of C. xerosis from closely related species. The results of the present investigation demonstrated that for reliable identification of C. xerosis strains from clinical samples, a combination of phenotypic and molecular-biology-based identification techniques is necessary.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microbes associated with marine sponges play significant roles in host physiology. Remarkable levels of microbial diversity have been observed in sponges worldwide through both culture-dependent and culture-independent studies. Most studies have focused on the structure of the bacterial communities in sponges and have involved sponges sampled from shallow waters. Here, we used pyrosequencing of 16S rRNA genes to compare the bacterial and archaeal communities associated with two individuals of the marine sponge Inflatella pellicula from the deep-sea, sampled from a depth of 2,900 m, a depth which far exceeds any previous sequence-based report of sponge-associated microbial communities. Sponge-microbial communities were also compared to the microbial community in the surrounding seawater. Sponge-associated microbial communities were dominated by archaeal sequencing reads with a single archaeal OTU, comprising similar to ∼60% and similar to ∼72% of sequences, being observed from Inflatella pellicula. Archaeal sequencing reads were less abundant in seawater (similar to ∼11% of sequences). Sponge-associated microbial communities were less diverse and less even than any other sponge-microbial community investigated to date with just 210 and 273 OTUs (97% sequence identity) identified in sponges, with 4 and 6 dominant OTUs comprising similar to ∼88% and similar to ∼89% of sequences, respectively. Members of the candidate phyla, SAR406, NC10 and ZB3 are reported here from sponges for the first time, increasing the number of bacterial phyla or candidate divisions associated with sponges to 43. A minor cohort from both sponge samples (similar to ∼0.2% and similar to ∼0.3% of sequences) were not classified to phylum level. A single OTU, common to both sponge individuals, dominates these unclassified reads and shares sequence homology with a sponge associated clone which itself has no known close relative and may represent a novel taxon.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introducción: La rápida detección e identificación bacteriana es fundamental para el manejo de los pacientes críticos que presentan una patología infecciosa, esto requiere de métodos rápidos para el inicio de un correcto tratamiento. En Colombia se usan pruebas microbiología convencional. No hay estudios de espectrofotometría de masas en análisis de muestras de pacientes críticos en Colombia. Objetivo general: Describir la experiencia del análisis microbiológico mediante la tecnología MALDI-TOF MS en muestras tomadas en la Fundación Santa Fe de Bogotá. Materiales y Métodos: Entre junio y julio de 2013, se analizaron 147 aislamientos bacterianos de muestras clínicas, las cuales fueron procesadas previamente por medio del sistema VITEK II. Los aislamientos correspondieron a 88 hemocultivos (60%), 28 urocultivos (19%), y otros cultivos 31 (21%). Resultados: Se obtuvieron 147 aislamientos con identificación adecuada a nivel de género y/o especie así: en el 88.4% (130 muestras) a nivel de género y especie, con una concordancia del 100% comparado con el sistema VITEK II. El porcentaje de identificación fue de 66% en el grupo de bacilos gram negativos no fermentadores, 96% en enterobacterias, 100% en gérmenes fastidiosos, 92% en cocos gram positivos, 100% bacilos gram negativos móviles y 100% en levaduras. No se encontró ninguna concordancia en bacilos gram positivos y gérmenes del genero Aggregatibacter. Conclusiones: El MALDI-TOF es una prueba rápida para la identificación microbiológica de género y especie que concuerda con los resultados obtenidos de manera convencional. Faltan estudios para hacer del MALDI-TOF MS la prueba oro en identificación de gérmenes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background and Aims: Intestinal dysbiosis has been described in children with chronic intestinal failure (CIF) and in adults with short bowel syndrome (SBS), mostly with jejunocolic anastomosis (SBS-2) and jejuno-ileal anastomosis (SBS-3), linked to generic data with the pathogenesis of Intestinal Failure Associated Liver Disease (IFALD). Little is known about gut microbiome of adults with end-jejunostomy (SBS-1) and in CIF other than SBS and any specific associations with the onset of IFALD. We aimed to describe the fecal microbiome of adult patients with different mechanisms of CIF and any possible associations with the development of IFALD. Material and methods: Fecal samples from 61 patients with benign CIF. Phylogenetic characterization of the microbiome by amplification of the hypervariable regions V3 and V4 of the bacterial gene encoding 16S rRNA, and subsequent grouping of sequences in amplicon sequence variants (ASVs). Patient samples comparison to microbiome sequences from 61 healthy subjects, matched for sex and age, selected from the healthy subjects library of the Laboratory of the Microbial Ecology of Health Unit, Department of Pharmacy and Biotechnology, of the University of Bologna. IFALD was assessed by the diagnostic criteria of IFALD-cholestasis, IFALD-steatosis, IFALD-fibrosis. Results: Decreased bacterial α-diversity in CIF patients (increase of Proteobacteria and Actinobacteria and decrease in Bacteroidetes). Identification of microbial family-level signatures specific for CIF mechanisms (increase in Actinomycetaceae and Streptococcaceae in SBS-1, Bifidobacteriaceae and Lactobacillaceae in SBS-2, Bacteroidaceae and Porphyromonadaceae in dysmotility). Abundance of Lactobacillus and Lactobacillaceae strongly associated with IFALD-cholestasis and IFALD–fibrosis for SBS-1; Peptostreptococcus, Prevotellaceae (Prevotella) and Pasteurellaceae (Haemophilus) significantly increased in IFALD-fibrosis for other CIF mechanisms. Conclusions: CIF patients had a marked intestinal dysbiosis with microbial family-level signatures specific to the pathophysiological mechanism. Specific characteristics of microbiome may contribute to the pathogenesis of IFALD. Intestinal microbiome could become a therapeutic target in patients with CIF.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The COVID-19 pandemic, sparked by the SARS-CoV-2 virus, stirred global comparisons to historical pandemics. Initially presenting a high mortality rate, it later stabilized globally at around 0.5-3%. Patients manifest a spectrum of symptoms, necessitating efficient triaging for appropriate treatment strategies, ranging from symptomatic relief to antivirals or monoclonal antibodies. Beyond traditional approaches, emerging research suggests a potential link between COVID-19 severity and alterations in gut microbiota composition, impacting inflammatory responses. However, most studies focus on severe hospitalized cases without standardized criteria for severity. Addressing this gap, the first study in this thesis spans diverse COVID-19 severity levels, utilizing 16S rRNA amplicon sequencing on fecal samples from 315 subjects. The findings highlight significant microbiota differences correlated with severity. Machine learning classifiers, including a multi-layer convoluted neural network, demonstrated the potential of microbiota compositional data to predict patient severity, achieving an 84.2% mean balanced accuracy starting one week post-symptom onset. These preliminary results underscore the gut microbiota's potential as a biomarker in clinical decision-making for COVID-19. The second study delves into mild COVID-19 cases, exploring their implications for ‘long COVID’ or Post-Acute COVID-19 Syndrome (PACS). Employing longitudinal analysis, the study unveils dynamic shifts in microbial composition during the acute phase, akin to severe cases. Innovative techniques, including network approaches and spline-based longitudinal analysis, were deployed to assess microbiota dynamics and potential associations with PACS. The research suggests that even in mild cases, similar mechanisms to hospitalized patients are established regarding changes in intestinal microbiota during the acute phase of the infection. These findings lay the foundation for potential microbiota-targeted therapies to mitigate inflammation, potentially preventing long COVID symptoms in the broader population. In essence, these studies offer valuable insights into the intricate relationships between COVID-19 severity, gut microbiota, and the potential for innovative clinical applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mine drainage is an important environmental disturbance that affects the chemical and biological components in natural resources. However, little is known about the effects of neutral mine drainage on the soil bacteria community. Here, a high-throughput 16S rDNA pyrosequencing approach was used to evaluate differences in composition, structure, and diversity of bacteria communities in samples from a neutral drainage channel, and soil next to the channel, at the Sossego copper mine in Brazil. Advanced statistical analyses were used to explore the relationships between the biological and chemical data. The results showed that the neutral mine drainage caused changes in the composition and structure of the microbial community, but not in its diversity. The Deinococcus/Thermus phylum, especially the Meiothermus genus, was in large part responsible for the differences between the communities, and was positively associated with the presence of copper and other heavy metals in the environmental samples. Other important parameters that influenced the bacterial diversity and composition were the elements potassium, sodium, nickel, and zinc, as well as pH. The findings contribute to the understanding of bacterial diversity in soils impacted by neutral mine drainage, and demonstrate that heavy metals play an important role in shaping the microbial population in mine environments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This clinical study has investigated the antigenic activity of bacterial contents from exudates of acute apical abscesses (AAAs) and their paired root canal contents regarding the stimulation capacity by levels of interleukin (IL)-1 beta and tumor necrosis factor alpha (TNF-α) throughout the root canal treatment against macrophage cells. Paired samples of infected root canals and exudates of AAAs were collected from 10 subjects. Endodontic contents were sampled before (root canal sample [RCS] 1) and after chemomechanical preparation (RCS2) and after 30 days of intracanal medication with calcium hydroxide + chlorhexidine gel (Ca[OH]2 + CHX gel) (RCS3). Polymerase chain reaction (16S rDNA) was used for detection of the target bacteria, whereas limulus amebocyte lysate was used to measure endotoxin levels. Raw 264.7 macrophages were stimulated with AAA exudates from endodontic contents sampled in different moments of root canal treatment. Enzyme-linked immunosorbent assays were used to measure the levels of TNF-α and IL-1 beta. Parvimonas micra, Porphyromonas endodontalis, Dialister pneumosintes, and Prevotella nigrescens were the most frequently detected species. Higher levels of endotoxins were found in samples from periapical exudates at RCS1 (P < .005). In fact, samples collected from periapical exudates showed a higher stimulation capacity at RCS1 (P < .05). A positive correlation was found between endotoxins from exudates with IL-1 beta (r = 0.97) and TNF-α (r = 0.88) production (P < .01). The significant reduction of endotoxins and bacterial species achieved by chemomechanical procedures (RCS2) resulted in a lower capacity of root canal contents to stimulate the cells compared with that at RCS1 (P < .05). The use of Ca(OH)2 + CHX gel as an intracanal medication (RCS3) improved the removal of endotoxins and bacteria from infected root canals (P < .05) whose contents induced a lower stimulation capacity against macrophages cells at RCS1, RCS2, and RCS3 (P < .05). AAA exudates showed higher levels of endotoxins and showed a greater capacity of macrophage stimulation than the paired root canal samples. Moreover, the use of intracanal medication improved the removal of bacteria and endotoxins from infected root canals, which may have resulted in the reduction of the inflammatory potential of the root canal content.