943 resultados para quasi-stationary
Resumo:
This paper reports preliminary progress on a principled approach to modelling nonstationary phenomena using neural networks. We are concerned with both parameter and model order complexity estimation. The basic methodology assumes a Bayesian foundation. However to allow the construction of pragmatic models, successive approximations have to be made to permit computational tractibility. The lowest order corresponds to the (Extended) Kalman filter approach to parameter estimation which has already been applied to neural networks. We illustrate some of the deficiencies of the existing approaches and discuss our preliminary generalisations, by considering the application to nonstationary time series.
Resumo:
In this paper, we discuss some practical implications for implementing adaptable network algorithms applied to non-stationary time series problems. Using electricity load data and training with the extended Kalman filter, we demonstrate that the dynamic model-order increment procedure of the resource allocating RBF network (RAN) is highly sensitive to the parameters of the novelty criterion. We investigate the use of system noise and forgetting factors for increasing the plasticity of the Kalman filter training algorithm, and discuss the consequences for on-line model order selection. We also find that a recently-proposed alternative novelty criterion, found to be more robust in stationary environments, does not fare so well in the non-stationary case due to the need for filter adaptability during training.
Resumo:
Recently, we introduced a new 'GLM-beamformer' technique for MEG analysis that enables accurate localisation of both phase-locked and non-phase-locked neuromagnetic effects, and their representation as statistical parametric maps (SPMs). This provides a useful framework for comparison of the full range of MEG responses with fMRI BOLD results. This paper reports a 'proof of principle' study using a simple visual paradigm (static checkerboard). The five subjects each underwent both MEG and fMRI paradigms. We demonstrate, for the first time, the presence of a sustained (DC) field in the visual cortex, and its co-localisation with the visual BOLD response. The GLM-beamformer analysis method is also used to investigate the main non-phase-locked oscillatory effects: an event-related desynchronisation (ERD) in the alpha band (8-13 Hz) and an event-related synchronisation (ERS) in the gamma band (55-70 Hz). We show, using SPMs and virtual electrode traces, the spatio-temporal covariance of these effects with the visual BOLD response. Comparisons between MEG and fMRI data sets generally focus on the relationship between the BOLD response and the transient evoked response. Here, we show that the stationary field and changes in oscillatory power are also important contributors to the BOLD response, and should be included in future studies on the relationship between neuronal activation and the haemodynamic response. © 2005 Elsevier Inc. All rights reserved.
Resumo:
Molecular transport in phase space is crucial for chemical reactions because it defines how pre-reactive molecular configurations are found during the time evolution of the system. Using Molecular Dynamics (MD) simulated atomistic trajectories we test the assumption of the normal diffusion in the phase space for bulk water at ambient conditions by checking the equivalence of the transport to the random walk model. Contrary to common expectations we have found that some statistical features of the transport in the phase space differ from those of the normal diffusion models. This implies a non-random character of the path search process by the reacting complexes in water solutions. Our further numerical experiments show that a significant long period of non-stationarity in the transition probabilities of the segments of molecular trajectories can account for the observed non-uniform filling of the phase space. Surprisingly, the characteristic periods in the model non-stationarity constitute hundreds of nanoseconds, that is much longer time scales compared to typical lifetime of known liquid water molecular structures (several picoseconds).
Resumo:
Performance optimisation of ultra-long Raman laser links is studied theoretically and experimentally. We observe that it is possible to reduce signal power excursion by adjusting FBG reflectivity without compromising pump efficiency.
Resumo:
Recent studies have stressed the importance of ‘open innovation’ as a means of enhancing innovation performance. The essence of the open innovation model is to take advantage of external as well as internal knowledge sources in developing and commercialising innovation, so avoiding an excessively narrow internal focus in a key area of corporate activity. Although the external aspect of open innovation is often stressed, another key aspect involves maximising the flow of ideas and knowledge from different sources within the firm, for example through knowledge sharing via the use of cross-functional teams. A fully open innovation approach would therefore combine both aspects i.e. cross-functional teams with boundary-spanning knowledge linkages. This suggests that there should be complementarities between the use cross-functional teams with boundary-spanning knowledge linkages i.e. the returns to implementing open innovation in one innovation activity is should be greater if open innovation is already in place in another innovation activity. However, our findings – based on a large sample of UK and German manufacturing plants – do not support this view. Our results suggest that in practice the benefits envisaged in the open innovation model are not generally achievable by the majority of plants, and that instead the adoption of open innovation across the whole innovation process is likely to reduce innovation outputs. Our results provide some guidance on the type of activities where the adoption of a market-based governance structure such as open innovation may be most valuable. This is likely to be in innovation activities where search is deterministic, activities are separable, and where the required level of knowledge sharing is correspondingly moderate – in other words those activities which are more routinized. For this type of activity market-based governance mechanisms (i.e. open innovation) may well be more efficient than hierarchical governance structures. For other innovation activities where outcomes are more uncertain and unpredictable and the risks of knowledge exchange hazards are greater, quasi-market based governance structures such as open innovation are likely to be subject to rapidly diminishing returns in terms of innovation outputs.
Resumo:
Transmission through a complex network of nonlinear one-dimensional leads is discussed by extending the stationary scattering theory on quantum graphs to the nonlinear regime. We show that the existence of cycles inside the graph leads to a large number of sharp resonances that dominate scattering. The latter resonances are then shown to be extremely sensitive to the nonlinearity and display multistability and hysteresis. This work provides a framework for the study of light propagation in complex optical networks.
Resumo:
Here, for the first time, we experimentally demonstrate optical data transmission through such quasi-lossless fibre spans, which provide an entirely different nonlinear propagation regime to conventionally EDFA/Raman amplified systems. We demonstrate 42.6 Gb/s transmission over 2500 km of SMF-28 with an 82 km span length, and investigate the optimisation of the system in terms of launch power and nonlinear tolerance. Our results show the first ever data transmission experiment using an ultra-long Raman laser to provide quasi-lossless conditions in the transmission fibre. For a span length of 82 km we have shown 2500 km transmission over SMF-28 fibre at 42.6 Gb/s. Our quasi-lossless configuration had 6 dB lower optimum power and improved nonlinear tolerance compared with a conventional EDFA only system.
Resumo:
We experimentally investigate a long-distance, high-bit-rate transmission system which combines optical-phase-conjugation with quasi-lossless amplification. Comparison with a conventional system configuration demonstrates the possibility of obtaining both dispersion compensation and improved nonlinear tolerance using proposed scheme.
Resumo:
We present the first experimental implementation of a recently designed quasi-lossless fiber span with strongly reduced signal power excursion. The resulting fiber waveguide medium can be advantageously used both in lightwave communications and in all-optical nonlinear data processing.
Resumo:
We present the first experimental implementation of a recently designed quasi-lossless fibre span with strongly reduced signal power excursion. The resulting fibre waveguide medium can be advantageously used both in lightwave communications and in all-optical nonlinear data processing.
Resumo:
Performance optimization of ultra-long Raman laser links is studied theoretically and experimentally. We demonstrate that it is possible to reduce the signal power excursion by adjusting FBG reflectivity without compromising pump efficiency. Furthermore, we experimentally demonstrate an OSNR improvement of 4.3 dB in our system after 4000 km transmission by switching from conventional erbium-doped fibre amplifiers to quasi-lossless transmission.
Resumo:
The statistics of the reflection spectrum of a short-correlated disordered fiber Bragg grating are studied. The averaged spectrum appears to be flat inside the bandgap and has significantly suppressed sidelobes compared to the uniform grating of the same bandwidth. This is due to the Anderson localization of the modes of a disordered grating. This observation prompts a new algorithm for designing passband reflection gratings. Using the stochastic invariant imbedding approach it is possible to obtain the probability distribution function for the random reflection coefficient inside the bandgap and obtain both the variance of the averaged reflectivity as well as the distribution of the time delay of the grating.
Resumo:
A method of all-optical passive quasi-regeneration in transoceanic 40 Gbit/s return-to-zero transmission systems with strong dispersion management was described. The use of in-line nonlinear optical loop mirrors (NOLM) by the method was demonstrated. The quasi-regeneration of signals performed by NOLMs was found to improve the systems's performance.