938 resultados para producing liquid suspensions containing
Resumo:
The crystal structures of four peptides incorporating 1-aminocycloheptane-1-carboxylic acid (Ac7c) are described. Boc-Aib-Ac7c-NHMe and Boc-Pro-Ac7c-Ala-OMe adopt beta-turn conformations stabilized by an intramolecular 4----1 hydrogen bond, the former folding into a type-I/III beta-turn and the latter into a type-II beta-turn. In the dipeptide esters, Boc-Aib-Ac7c-OMe and Boc-Pro-Ac7c-OMe, the Ac7c and Aib residues adopt helical conformations, while the Pro residue remains semi-extended in both the molecules of Boc-Pro-Ac7c-OMe found in the asymmetric unit. The cycloheptane ring of Ac7c residues adopts a twist-chair conformation in all the peptides studied. 1H-NMR studies in CDCl3 and (CD3)2SO and IR studies in CDCl3 suggest that Boc-Aib-Ac7c-NHMe and Boc-Pro-Ac7c-Ala-OMe maintain the beta-turn conformations in solution.
Resumo:
Synthetic approach to 3-alkoxythapsane, comprising of the carbon framework of a small group of sesquiterpenes containing three contiguous quaternary carbon atoms has been described. A combination of alkylation, orthoester Claisen rearrangement and intramolecular diazoketone cyclopropanation has been employed for the creation of the three requisite contiguous quaternary carbon atoms.
Resumo:
Three model dipeptides containing a dehydroalanine residue (Ala) at the C-terminal, Boc-X-Ala-NHCH3 [X = Ala, Val, and Phe,] have been synthesized and their solution conformations investigated by 1H-NMR, IR, and CD spectroscopy. NMR studies on these peptides in CDCl3 clearly indicate that the NH group of dehydroalanine is involved in an intramolecular hydrogen bond. This conclusion is supported by IR studies also. Nuclear Overhauser effect (NOE) studies are also accommodative of an inverse -turn-type of conformation that is characterised by conformational angles of -70° and +70° around the X residue, and a C[stack i+1 ]H-Ni+2H interproton distance of 2.5 Å. It appears that unlike dehydrophenylalanine or dehydroleucine, which tend to stabilize -turn type of structures occupying the i + 2 position of the turn, dehydroalanine favors the formation of an inverse -turn, centered at the proceeding L-residue in such solvents as CDCl3 and (CD3)2SO. A comparison of solution conformation of Boc Val-Ala-NHCH3 with the corresponding saturated analogue, Boc-Val-Ala-NHCH3, is also presented and shows that dehydroalanine is responsible for inducing the turn structure. It may be possible to design peptides with different preferred conformations using the suitable dehydroamino acid.
Resumo:
This paper presents the effect of nonlocal scaling parameter on the terahertz wave propagation in fluid filled single walled carbon nanotubes (SWCNTs). The SWCNT is modeled as a Timoshenko beam,including rotary inertia and transverse shear deformation by considering the nonlocal scale effects. A uniform fluid velocity of 1000 m/s is assumed. The analysis shows that, for a fluid filled SWCNT, the wavenumbers of flexural and shear waves will increase and the corresponding wave speeds will decrease as compared to an empty SWCNT. The nonlocal scale parameter introduces certain band gap region in both flexural and shear wave mode where no wave propagation occurs. This is manifested in the wavenumber plots as the region where the wavenumber tends to infinite (or wave speed tends to zero). The frequency at which this phenomenon occurs is called the ``escape frequency''. The effect of fluid density on the terahertz wave propagation in SWCNT is also studied and the analysis shows that as the fluid becomes denser, the wave speeds will decrease. The escape frequency decreases with increase in nonlocal scaling parameter, for both wave modes. We also show that the effect of fluid density and velocity are negligible on the escape frequencies of flexural and shear wave modes. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The crystal structures of four peptides incorporating 1-aminocycloheptane-1-carboxylic acid (Ac7c) are described. Boc-Aib-Ac7c-NHMe and Boc-Pro-Ac7c-Ala-OMe adopt beta-turn conformations stabilized by an intramolecular 4----1 hydrogen bond, the former folding into a type-I/III beta-turn and the latter into a type-II beta-turn. In the dipeptide esters, Boc-Aib-Ac7c-OMe and Boc-Pro-Ac7c-OMe, the Ac7c and Aib residues adopt helical conformations, while the Pro residue remains semi-extended in both the molecules of Boc-Pro-Ac7c-OMe found in the asymmetric unit. The cycloheptane ring of Ac7c residues adopts a twist-chair conformation in all the peptides studied. 1H-NMR studies in CDCl3 and (CD3)2SO and IR studies in CDCl3 suggest that Boc-Aib-Ac7c-NHMe and Boc-Pro-Ac7c-Ala-OMe maintain the beta-turn conformations in solution.
Resumo:
Two crystals structures of a nonapeptide (anhydrous and hydrated) containing the amino acid residue alpha, alpha-di-n-butylglycyl, reveal a mixed 3(10)/alpha-helical conformation. Residues 1-7 adopt phi, psi values in the helical region, with Val(8) being appreciably distorted. The Dbg residue has phi, psi values of -40, -37 degrees and -46, -40 degrees in two crystals with the two butyl side chains mostly extended in each. Peptide molecules in the crystals pack into helical columns. The crystal parameters are C50H91N9O12, space group P2(1), with a = 9.789(1) Angstrom, b = 20.240(2) Angstrom, c = 15.998(3) Angstrom, beta = 103.27(1); Z = 2, R = 10.3% for 1945 data observed >3 sigma(F) and C50H91N9O12. 3H(2)O, space group P2(1), with a = 9.747(3) Angstrom, b = 21.002(8) Angstrom, c = 15.885(6) Angstrom, beta = 102.22(3)degrees, Z = 2, R = 13.6% for 2535 data observed >3 sigma(F). The observation of a helical conformation at Dbg suggests that the higher homologs in the alpha, alpha-dialkylated glycine series also have a tendency to stabilize peptide helices. (C) Munksgaard 1996.
Resumo:
Within the Grassmannian U(2N)/U(N) x U(N) nonlinear sigma-model representation of localization, one can study the low-energy dynamics of both a free and interacting electron gas. We study the crossover between these two fundamentally different physical problems. We show how the topological arguments for the exact quantization of the Hall conductance are extended to include the Coulomb interaction problem. We discuss dynamical scaling and make contact with the theory of variable range hopping. (C) 2005 Pleiades Publishing, Inc.
Resumo:
The peptide Boc-Gly-Dpg-Gly-Gly-Dpg-Gly-NHMe (1) has been synthesized to examine the conformational preferences of Dpg residues in the context of a poor helix promoting sequence. Single crystals of 1 were obtained in the space group P21/c with a = 13.716(2) Å, b = 12.960(2) Å, c = 22.266(4) Å, and β = 98.05(1)°; R = 6.3% for 3660 data with |Fo| > 4σ. The molecular conformation in crystals revealed that the Gly(1)-Dpg(2) segment adopts φ, ψ values distorted from those expected for an ideal type II‘ β-turn (φGly(1) = +72.0°, ψGly(1) = −166.0°; φDpg(2) = −54.0°, ψDpg(2) = −46.0°) with an inserted water molecule between Boc-CO and Gly(3)NH. The Gly(3)-Gly(4) segment adopts φ, ψ values which lie broadly in the right handed helical region (φGly(3) = −78.0°, ψGly(3) = −9.0°; φGly(4) = −80.0°, ψGly(4) = −18.0°). There is a chiral reversal at Dpg(5) which takes up φ, ψ values in the left handed helical region. The Dpg(5)-Gly(6) segment closely resembles an ideal type I‘ β-turn (φDpg(5) = +56.0°, ψDpg(5) = +32.0°; φGly(6) = +85.0°, ψGly(6) = −3.0°). Molecules of both chiral senses are found in the centrosymmetric crystal. The C-terminus forms a hydrated Schellman motif, with water insertion into the potential 6 → 1 hydrogen bond between Gly(1)CO and Gly(6)NH. NMR studies in CDCl3 suggest substantial retention of the multiple turn conformation observed in crystals. In solution the observed NOEs support local helical conformation at the two Dpg residues.
Resumo:
The air-water interface has traditionally been employed to prepare particle assemblies and films of metals and semiconductors. The interface between water and an organic liquid, however, has not been investigated sufficiently for possible use in preparing nanocrystals and thin films of materials. In this article, we demonstrate the use of the liquid-liquid interface as a medium for preparing ultrathin films of metals, chalcogenides and oxides. The method involves the reaction at the interface between a metal-organic compound in the organic layer and an appropriate reagent for reduction, sulfidation, etc. in the aqueous layer. Some of the materials discussed are nanocrystalline films of gold, CuS, CuSe, CuO, and Cu(OH)(2) formed at the liquid-liquid interface. The results reported in this article should demonstrate the versatility and potential of the liquid-liquid interface for preparing nanomaterials and ultrathin films and encourage further research in this area. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
The effects of inserting unsubstituted omega-amino acids into the strand segments of model beta-hairpin peptides was investigated by using four synthetic decapeptides, Boc-Lcu-Val-Xxx-Val-D-Pro-Gly-Leu-Xxx-Val-Val- OMe: pepticle 1 (Xxx=Gly), pepticle 2 (Xxx=beta Gly=beta hGly=homoglycine, beta-glycine), pepticle 3 (Xxx=gamma Abu=gamma-aminobutyric acid), pepticle 4 (Xxx= delta Ava=delta-aminovaleric acid). H-1 NMR studies (500 MHz, methanol) reveal several critical cross-strand NOEs, providing evidence for P-hairpin conformations in peptides 2-4. In peptide 3, the NMR results support the formation of the nucleating turn, however, evidence for cross-strand registry is not detected. Single-crystal X-ray diffraction studies of peptide 3 reveal a beta-hairpin conformation for both molecules in the crystallographic asymmetric unit, stabilized by four cross-strand hydrogen bonds, with the gamma Abu residues accommodated within the strands. The D-Pro-Gly segment in both molecules (A,B) adopts a type II' beta-turn conformation. The circular dichroism spectrum for peptide 3 is characterized by a negative CD band at 229 rim, whereas for peptides 2 and 4, the negative band is centered at 225 nm, suggesting a correlation between the orientation of the amide units in the strand segments and the observed CD pattern.
Resumo:
The air-water interface has traditionally been employed to prepare particle assemblies and films of metals and semiconductors. The interface between water and an organic liquid, however, has not been investigated sufficiently for possible use in preparing nanocrystals and thin films of materials. In this article, we demonstrate the use of the liquid-liquid interface as a medium for preparing ultrathin films of metals, chalcogenides and oxides. The method involves the reaction at the interface between a metal-organic compound in the organic layer and an appropriate reagent for reduction, sulfidation, etc. in the aqueous layer. Some of the materials discussed are nanocrystalline films of gold, CuS, CuSe, CuO, and Cu(OH)(2) formed at the liquid-liquid interface. The results reported in this article should demonstrate the versatility and potential of the liquid-liquid interface for preparing nanomaterials and ultrathin films and encourage further research in this area.
Resumo:
Theoretical expressions for stresses and displacements have been derived for bending under a ring load of a free shell, a shell embedded in a soft medium, and a shell containing a soft core. Numerical work has been done for typical cases with an Elliot 803 Digital Computer and influence lines are drawn therefrom.