860 resultados para prenatal sensory stimulation
Resumo:
Introduction: Previous studies have shown that relaxation music increases the heart's parasympathetic modulation as well as reducing its sympathetic activity. However, what is lacking in the literature is information on the acute effects of different intensities of music on cardiac autonomic regulation. We aimed to evaluate the acute effects of baroque and heavy-metal music on cardiac autonomic regulation at different intensities. Method The study was performed in 16 healthy men aged between 18 and 25 years. The main outcomes were the geometric indices of heart-rate variability (HRV) [i.e. triangular index (RRtri); triangular interpolation of RR intervals (TINN) and Poincaré plot: SD1, SD2 and SD1/SD2 ratio]. First, HRV was recorded at rest for 10 min. The volunteers were then exposed to baroque or heavy-metal music for 5 min through an earphone; subjects were exposed to each song at three different sound levels (60–70, 70–80 and 80–90 decibels). After the first song, subjects remained at rest for 5 min before being exposed to the next song. The sequence of songs and sound intensity were randomised for each individual. Results Musical auditory stimulation with baroque music did not influence the geometric indices of HRV. The same was observed with heavy-metal musical auditory stimulation at the three sound-level ranges. Conclusion Musical auditory stimulation at different sound intensities did not influence the geometric indices of HRV in men.
Resumo:
We investigated the acute effects of musical auditory stimulation on cardiac autonomic responses to a mental task in 28 healthy men (18–22 years old). In the control protocol (no music), the volunteers remained at seated rest for 10 min and the test was applied for five minutes. After the end of test the subjects remained seated for five more minutes. In the music protocol, the volunteers remained at seated rest for 10 min, then were exposed to music for 10 min; the test was then applied over five minutes, and the subjects remained seated for five more minutes after the test. In the control and music protocols the time domain and frequency domain indices of heart rate variability remained unchanged before, during and after the test. We found that musical auditory stimulation with baroque music did not influence cardiac autonomic responses to the mental task.
Resumo:
INTRODUCTION: We aimed to evaluate the effects of musical auditory stimulation on cardiac autonomic regulation in subjects who enjoy and who do not enjoy the music. METHOD: The study was performed in young women (18-27 years old) divided in two groups (1) volunteers who enjoyed the music and (2) volunteers who did not enjoy the music. Linear indices of heart rate variability were analyzed in the time domain. The subjects were exposed to a musical piece (Pachelbel: Canon in D Major) during 10 minutes. Heart rate variability was analyzed at rest with no music and during musical auditory stimulation. RESULTS: In the group that enjoyed the music the standard deviation of normal-to-normal R-R intervals (SDNN) was significantly reduced during exposure to musical auditory stimulation. We found no significant changes for the other linear indices. The group composed of women who did not enjoy the music did not present significant cardiac autonomic responses during exposure to musical auditory stimulation. CONCLUSION: Women who enjoyed the music presented a significant cardiac autonomic response consisting of a reduction in heart rate variability induced by the musical auditory stimulation. Those who did not enjoy the musical piece presented no such response.
Resumo:
Objectives: The effects of chronic music auditory stimulation on the cardiovascular system have been investigated in the literature. However, data regarding the acute effects of different styles of music on cardiac autonomic regulation are lacking. The literature has indicated that auditory stimulation with white noise above 50 dB induces cardiac responses. We aimed to evaluate the acute effects of classical baroque and heavy metal music of different intensities on cardiac autonomic regulation. Study design: The study was performed in 16 healthy men aged 18-25 years. All procedures were performed in the same soundproof room. We analyzed heart rate variability (HRV) in time (standard deviation of normal-to-normal R-R intervals [SDNN], root-mean square of differences [RMSSD] and percentage of adjacent NN intervals with a difference of duration greater than 50 ms [pNN50]) and frequency (low frequency [LF], high frequency [HF] and LF/HF ratio) domains. HRV was recorded at rest for 10 minutes. Subsequently, the volunteers were exposed to one of the two musical styles (classical baroque or heavy metal music) for five minutes through an earphone, followed by a five-minute period of rest, and then they were exposed to the other style for another five minutes. The subjects were exposed to three equivalent sound levels (60- 70dB, 70-80dB and 80-90dB). The sequence of songs was randomized for each individual. Results: Auditory stimulation with heavy metal music did not influence HRV indices in the time and frequency domains in the three equivalent sound level ranges. The same was observed with classical baroque musical auditory stimulation with the three equivalent sound level ranges. Conclusion: Musical auditory stimulation of different intensities did not influence cardiac autonomic regulation in men.
Resumo:
Background: Chronic classical music was reported to increase parasympathetic activitywhen evaluating heart rate variability (HRV). It is poor in the literature investigation of the acute effects of baroque and heavy metal styles of musical auditory stimulation on HRV. In this study we evaluated the acute effects of relaxant baroque and excitatory heavy metal music on the geometric indices of HRV in healthy men. Method: The study was performed in 12 healthy men between 18 and 30 years old. We excluded persons with previous experience with music instrument and those who had affinity with the song styles. We analyzed the following indices: RRtri, TINN and Poincaré plot (SD1, SD2 and SD1/SD2 ratio). HRV was recorded at rest for ten minutes. Subsequently they were exposed to relaxant baroque or excitatory heavy metal music for five minutes through an earphone. After the first music exposure they remained at rest for more five minutes and them they were exposed again to Baroque or Heavy Metal music (65–80 dB). The sequence of songs was randomized for each individual. Results: The RRTri and SD2 indices were reduced during the heavy metal musical auditory stimulation (p < 0.05). No changes were observed regarding TINN, SD1 and SD1/SD2 ratio (p > 0.05).The qualitative Poincaré plot analysis indicated that during relaxant classical baroque music there was observed a higher beat-to-beat dispersion of RR intervals compared with no music exposure and during excitatory heavy metal musical auditory stimulation, showing higher HRV. Conclusion: We suggest that excitatory heavy metal music acutely decreases global HRV.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
In this study the occurrence of sensory structures on the antennules and antennae of the giant river prawn Macrobrachium rosenbergii (De Man) during postembryonic ontogenetic development were examined. Larvae and postlarvae were obtained from hatchery recirculating tanks, juveniles from indoor nursery tanks, and adults from earthen grow-out ponds. The animals were fixed with Karnovsky fixative and dissected. Antennules and antennae were removed, metal-coated, and photodocumented using a scanning electron microscope. The antennules have aesthetascs and simple plumose and pappose setae; the antennae have simple, plumose and pappose setae. These structures increase in density, covered surface, and distribution during ontogeny and should be related to chemoreception and mechanoreception. The antennular statocyst that appears during larval stage VII of the giant river prawn has an array of sensory structures that enable the perception of chemical and tactile stimuli beginning with its early life stages. The ontogenetic changes observed allow an inference that initial-stage larvae, advance-stage larvae, juveniles, and adults have different capacities to exploit the environment.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)