846 resultados para predator-prey


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the Florida Panhandle region, bottlenose dolphins (Tursiops truncatus) have been highly susceptible to large-scale unusual mortality events (UMEs) that may have been the result of exposure to blooms of the dinoflagellate Karenia brevis and its neurotoxin, brevetoxin (PbTx). Between 1999 and 2006, three bottlenose dolphin UMEs occurred in the Florida Panhandle region. The primary objective of this study was to determine if these mortality events were due to brevetoxicosis. Analysis of over 850 samples from 105 bottlenose dolphins and associated prey items were analyzed for algal toxins and have provided details on tissue distribution, pathways of trophic transfer, and spatial-temporal trends for each mortality event. In 1999/2000, 152 dolphins died following extensive K. brevis blooms and brevetoxin was detected in 52% of animals tested at concentrations up to 500 ng/g. In 2004, 105 bottlenose dolphins died in the absence of an identifiable K. brevis bloom; however, 100% of the tested animals were positive for brevetoxin at concentrations up to 29,126 ng/mL. Dolphin stomach contents frequently consisted of brevetoxin-contaminated menhaden. In addition, another potentially toxigenic algal species, Pseudo-nitzschia, was present and low levels of the neurotoxin domoic acid (DA) were detected in nearly all tested animals (89%). In 2005/2006, 90 bottlenose dolphins died that were initially coincident with high densities of K. brevis. Most (93%) of the tested animals were positive for brevetoxin at concentrations up to 2,724 ng/mL. No DA was detected in these animals despite the presence of an intense DA-producing Pseudo-nitzschia bloom. In contrast to the absence or very low levels of brevetoxins measured in live dolphins, and those stranding in the absence of a K. brevis bloom, these data, taken together with the absence of any other obvious pathology, provide strong evidence that brevetoxin was the causative agent involved in these bottlenose dolphin mortality events.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sentinel species such as bottlenose dolphins (Tursiops truncatus) can be impacted by large-scale mortality events due to exposure to marine algal toxins. In the Sarasota Bay region (Gulf of Mexico, Florida, USA), the bottlenose dolphin population is frequently exposed to harmful algal blooms (HABs) of Karenia brevis and the neurotoxic brevetoxins (PbTx; BTX) produced by this dinoflagellate. Live dolphins sampled during capture-release health assessments performed in this region tested positive for two HAB toxins; brevetoxin and domoic acid (DA). Over a ten-year study period (2000–2009) we have determined that bottlenose dolphins are exposed to brevetoxin and/or DA on a nearly annual basis (i.e., DA: 2004, 2005, 2006, 2008, 2009; brevetoxin: 2000, 2004, 2005, 2008, 2009) with 36% of all animals testing positive for brevetoxin (n = 118) and 53% positive for DA (n = 83) with several individuals (14%) testing positive for both neurotoxins in at least one tissue/fluid. To date there have been no previously published reports of DA in southwestern Florida marine mammals, however the May 2008 health assessment coincided with a Pseudo-nitzschia pseudodelicatissima bloom that was the likely source of DA observed in seawater and live dolphin samples. Concurrently, both DA and brevetoxin were observed in common prey fish. Although no Pseudo-nitzschia bloom was identified the following year, DA was identified in seawater, fish, sediment, snails, and dolphins. DA concentrations in feces were positively correlated with hematologic parameters including an increase in total white blood cell (p = 0.001) and eosinophil (p<0.001) counts. Our findings demonstrate that dolphins within Sarasota Bay are commonly exposed to two algal toxins, and provide the impetus to further explore the potential long-term impacts on bottlenose dolphin health.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Monitor National Marine Sanctuary (MNMS) was the nation’s first sanctuary, originally established in 1975 to protect the famous civil war ironclad shipwreck, the USS Monitor. Since 2008, sanctuary sponsored archeological research has branched out to include historically significant U-boats and World War II shipwrecks within the larger Graveyard of the Atlantic off the coast of North Carolina. These shipwrecks are not only important for their cultural value, but also as habitat for a wide diversity of fishes, invertebrates and algal species. Additionally, due to their unique location within an important area for biological productivity, the sanctuary and other culturally valuable shipwrecks within the Graveyard of the Atlantic are potential sites for examining community change. For this reason, from June 8-30, 2010, biological and ecological investigations were conducted at four World War II shipwrecks (Keshena, City of Atlanta, Dixie Arrow, EM Clark), as part of the MNMS 2010 Battle of the Atlantic (BOTA) research project. At each shipwreck site, fish community surveys were conducted and benthic photo-quadrats were collected to characterize the mobile conspicuous fish, smaller prey fish, and sessile invertebrate and algal communities. In addition, temperature sensors were placed at all four shipwrecks previously mentioned, as well as an additional shipwreck, the Manuela. The data, which establishes a baseline condition to use in future assessments, suggest strong differences in both the fish and benthic communities among the surveyed shipwrecks based on the oceanographic zone (depth). In order to establish these shipwrecks as sites for detecting community change it is suggested that a subset of locations across the shelf be selected and repeatedly sampled over time. In order to reduce variability within sites for both the benthic and fish communities, a significant number of surveys should be conducted at each location. This sampling strategy will account for the natural differences in community structure that exist across the shelf due to the oceanographic regime, and allow robust statistical analyses of community differences over time.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have recently exchanged and integrated into a single database tag detections for conch, teleost and elasmobranch fish from four separately maintained arrays in the U.S. Virgin Islands including the NMFS queen conch array (St. John nearshore), NOAA’s Biogeography Branch array (St. John nearshore & midshelf reef); UVI shelf edge arrays (Marine Conservation District, Grammanik & other shelf edge); NOAA NMFS Apex Predator array COASTSPAN (St. John nearshore). The integrated database has over 7.5 million hits. Data is shared only with consent of partners and full acknowledgements. Thus, the summary of integrated data here uses data from NOAA and UVI arrays under a cooperative agreement. The benefits of combining and sharing data have included increasing the total area of detection resulting in an understanding of broader scale connectivity than would have been possible with a single array. Partnering has also been cost-effectiveness through sharing of field work, staff time and equipment and exchanges of knowledge and experience across the network. Use of multiple arrays has also helped in optimizing the design of arrays when additional receivers are deployed. The combined arrays have made the USVI network one of the most extensive acoustic arrays in the world with a total of 150+ receivers available, although not necessarily all deployed at all times. Currently, two UVI graduate student projects are using acoustic array data.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Few studies have quantified the extent of nocturnal cross-habitat movements for fish, or the influence of habitat adjacencies on nutrient flows and trophodynamics. To investigate the patterns of nocturnal cross-boundary movements of fish and quantify trophic connectivity, fish were sampled at night with gillnets set along the boundaries between dominant habitat types (coral reef/seagrass and mangrove/seagrass) in southwestern Puerto Rico. Fish movement across adjacent boundary patches were equivalent at both coral reefs and mangroves. Prey biomass transfer was greater from seagrass to coral reefs (0.016 kg/km) and from mangroves to seagrass (0.006 kg/km) but not statistically significant, indicating a balance of flow between adjacent habitats. Pelagic species (jacks, sharks, rays) accounted for 37% of prey biomass transport at coral reef/seagrass and 46% at mangrove/seagrass while grunts and snappers accounted for 7% and 15%, respectively. This study indicated that coral reefs and mangroves serve as a feeding area for a wide range of multi-habitat fish species. Crabs were the most frequent prey item in fish leaving coral reefs while molluscs were observed slightly more frequently than crabs in fish entering coral reefs. For most prey types, biomass exported from mangroves was greater than biomass imported. The information on direction of fish movement together with analysis of prey data provided strong evidence of ecological linkages between distinct adjacent habitat types and highlighted the need for greater inclusion of a mosaic of multiple habitats when attempting to understand ecosystem function including the spatial transfer of energy across the seascape.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The impact of recent changes in climate on the arctic environment and its ecosystems appear to have a dramatic affect on natural populations (National Research Council Committee on the Bering Sea Ecosystem 1996) and pose a serious threat to the continuity of indigenous arctic cultures that are dependent on natural resources for subsistence (Peterson D. L., Johnson 1995). In the northeast Pacific, winter storms have intensified and shifted southward causing fundamental changes in sea surface temperature patterns (Beamish 1993, Francis et al. 1998). Since the mid 1970’s surface waters of the central basin of the Gulf of Alaska (GOA) have warmed and freshened with a consequent increase in stratification and reduced winter entrainment of nutrients (Stabeno et al. 2004). Such physical changes in the structure of the ocean can rapidly affect lower trophic levels and indirectly affect fish and marine mammal populations through impacts on their prey (Benson and Trites 2002). Alaskan natives expect continued and perhaps accelerating changes in resources due to global warming (DFO 2006).and want to develop strategies to cope with their changing environment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Between June 1995 and May 1996 seven rookeries in the Gulf of California were visited four times in order to collect scat samples for studying spatial and seasonal variability California sea lion prey. The rookeries studied were San Pedro Mártir, San Esteban, El Rasito, Los Machos, Los Cantiles, Isla Granito, and Isla Lobos. The 1273 scat samples collected yielded 4995 otoliths (95.3%) and 247 (4.7%) cephalopod beaks. Fish were found in 97.4% of scat samples collected, cephalopods in 11.2%, and crustaceans in 12.7%. We identified 92 prey taxa to the species level, 11 to genus level, and 10 to family level, of which the most important were Pacific cutlassfish (Trichiurus lepturus), Pacific sardine (Sardinops caeruleus), plainfin midshipman (Porichthys spp.), myctophid no. 1, northern anchovy (Engraulis mordax), Pacific mackerel (Scomber japonicus), anchoveta (Cetengraulis mysticetus), and jack mackerel (Trachurus symmetricus). Significant differences were found among rookeries in the occurrence of all main prey (P≤0.04), except for myctophid no. 1 (P>0.05). Temporally, significant differences were found in the occurrence of Pacific cutlassfish, Pacific sardine, plainfin midshipman, northern anchovy, and Pacific mackerel (P<0.05), but not in jack mackerel (χ 2=2.94, df=3, P=0.40), myctophid no. 1 (χ 2=1.67, df= 3, P=0.64), or lanternfishes (χ 2=2.08, df=3, P=0.56). Differences were observed in the diet and in trophic diversity among seasons and rookeries. More evident was the variation in diet in relation to availability of Pacific sardine.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Increasing interest in the use of stock enhancement as a management tool necessitates a better understanding of the relative costs and benefits of alternative release strategies. We present a relatively simple model coupling ecology and economic costs to make inferences about optimal release scenarios for summer flounder (Paralichthys dentatus), a subject of stock enhancement interest in North Carolina. The model, parameterized from mark-recapture experiments, predicts optimal release scenarios from both survival and economic standpoints for varyious dates-of-release, sizes-at-release, and numbers of fish released. Although most stock enhancement efforts involve the release of relatively small fish, the model suggests that optimal results (maximum survival and minimum costs) will be obtained when relatively large fish (75–80 mm total length) are released early in the nursery season (April). We investigated the sensitivity of model predictions to violations of the assumption of density-independent mortality by including density-mortality relationships based on weak and strong type-2 and type-3 predator functional responses (resulting in depensatory mortality at elevated densities). Depending on postrelease density, density-mortality relationships included in the model considerably affect predicted postrelease survival and economic costs associated with enhancement efforts, but do not alter the release scenario (i.e. combination of release variables) that produces optimal results. Predicted (from model output) declines in flounder over time most closely match declines observed in replicate field sites when mortality in the model is density-independent or governed by a weak type-3 functional response. The model provides an example of a relatively easy-to-develop predictive tool with which to make inferences about the ecological and economic potential of stock enhancement of summer flounder and provides a template for model creation for additional species that are subjects of stock enhancement interest, but for which limited empirical data exist.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The increase in harbor seal (Phoca vitulina richardsi) abundance, concurrent with the decrease in salmonid (Oncorhynchus spp.) and other fish stocks, raises concerns about the potential negative impact of seals on fish populations. Although harbor seals are found in rivers and estuaries, their presence is not necessarily indicative of exclusive or predominant feeding in these systems. We examined the diet of harbor seals in the Umpqua River, Oregon, during 1997 and 1998 to indirectly assess whether or not they were feeding in the river. Fish otoliths and other skeletal structures were recovered from 651 scats and used to identify seal prey. The use of all diagnostic prey structures, rather than just otoliths, increased our estimates of the number of taxa, the minimum number of individuals and percent frequency of occurrence (%FO) of prey consumed. The %FO indicated that the most common prey were pleuronectids, Pacific hake (Merluccius productus), Pacific stag-horn sculpin (Leptocottus armatus), osmerids, and shiner surfperch (Cymatogaster aggregata). The majority (76%) of prey were fish that inhabit marine waters exclusively and fish found in marine and estuarine areas (e.g. anadromous spp.) which would indicate that seals forage predominantly at sea and use the estuary for resting and opportunistic feeding. Salmonid remains were encountered in 39 samples (6%); two samples contained identifiable otoliths, which were determined to be from chi-nook salmon (O. tshawytscha). Because of the complex salmonid composition in the Umpqua River, we used molecular genetic techniques on salmonid bones retrieved from scat to discern species that were rare from those that were abundant. Of the 37 scats with salmonid bones but no otoliths, bones were identified genetically as chinook or coho (O. kisutch) salmon, or steelhead trout (O. mykiss) in 90% of the samples.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We examined the diets and habitat shift of juvenile red snapper (Lutjanus campechanus) in the northeast Gulf of Mexico. Fish were collected from open sand-mud habitat (little to no relief), and artificial reef habitat (1-m3 concrete or PVC blocks), from June 1993 through December 1994. In 1994, fish settled over open habitat from June to September, as shown by trawl collections, then began shifting to reef habitat — a shift that was almost completed by December as observed by SCUBA visual surveys. Stomachs were examined from 1639 red snapper that ranged in size from 18.0 to 280.0 mm SL. Of these, 850 fish had empty stomachs, and 346 fish from open habitat and 443 fish from reef habitat contained prey. Prey were identified to the lowest possible taxon and quantified by volumetric measurement. Specific volume of particular prey taxa were calculated by dividing prey volume by individual fish weight. Red snapper shifted diets with increasing size. Small red snapper (<60 mm SL) fed mostly on chaetognaths, copepods, shrimp, and squid. Large red snapper (60–280 mm SL) shifted feeding to fish prey, greater amounts of squid and crabs, and continued feeding on shrimp. We compared red snapper diets for overlapping size classes (70–160 mm SL) of fish that were collected from both habitats (Bray-Curtis dissimilarity index and multidimensional scaling analysis). Red snapper diets separated by habitat type rather than fish size for the size ranges that overlapped habitats. These diet shifts were attributed to feeding more on reef prey than on open-water prey. Thus, the shift in habitat shown by juvenile red snapper was reflected in their diet and suggested differential habitat values based not just on predation refuge but food resources as well.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The diet of Pacific cod (Gadus macrocephalus) in the area of Pavlof Bay, Alaska, was studied in the early 1980s by Albers and Anderson (1985). They found that the dominant prey species were forage species like pandalid shrimp, capelin (Mallotus villosus), and walleye pollock (Theragra chalcogramma). The shrimp fishery in Pavlof Bay began in 1968 and closed in 1980 because of low shrimp abundance (Ruccio and Worton1). Survey data indicate that, during the period between 1972 and 1997, the abundance of forage species such as pandalid shrimp and capelin declined and higher trophic-level groundfish such as Pacific cod increased. There is a general recognition that a long-term ocean climate shift in the Gulf of Alaska has been partially responsible for the observed reorganization of the community structure (Anderson and Piatt, 1999).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The lengths of otoliths and other skeletal structures recovered from the scats of pinnipeds, such as Steller sea lions (Eumetopias jubatus), correlate with body size and can be used to estimate the length of prey consumed. Unfortunately, otoliths are often found in too few scats or are too digested to usefully estimate prey size. Alternative diagnostic bones are frequently recovered, but few bone-size to prey-size correlations exist and bones are also reduced in size by various degrees owing to digestion. To prevent underestimates in prey sizes consumed techniques are required to account for the degree of digestion of alternative bones prior to estimating prey size. We developed a method (using defined criteria and photo-reference material) to assign the degree of digestion for key cranial structures of two prey species: walleye pollock (Theragra chalcogramma) and Atka mackerel (Pleurogrammus monopterygius). The method grades each structure into one of three condition categories; good, fair or poor. We also conducted feeding trials with captive Steller sea lions, feeding both fish species to determine the extent of erosion of each structure and to derive condition-specific digestion correction factors to reconstruct the original sizes of the structures consumed. In general, larger structures were relatively more digested than smaller ones. Mean size reduction varied between different types of structures (3.3−26.3%), but was not influenced by the size of the prey consumed. Results from the observations and experiments were combined to be able to reconstruct the size of prey consumed by sea lions and other pinnipeds. The proposed method has four steps: 1) measure the recovered structures and grade the extent of digestion by using defined criteria and photo-reference collection; 2) exclude structures graded in poor condition; 3) multiply measurements of structures in good and fair condition by their appropriate digestion correction factors to derive their original size; and 4) calculate the size of prey from allometric regressions relating corrected structure measurements to body lengths. This technique can be readily applied to piscivore dietary studies that use hard remains of fish.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lengths of walleye pollock (Theragra chalcogramma) consumed by Steller sea lions (Eumetopias jubatus) were estimated by using allometric regressions applied to seven diagnostic cranial structures recovered from 531 scats collected in Southeast Alaska between 1994 and 1999. Only elements in good and fair condition were selected. Selected structural measurements were corrected for loss of size due to erosion by using experimentally derived condition-specific digestion correction factors. Correcting for digestion increased the estimated length of fish consumed by 23%, and the average mass of fish consumed by 88%. Mean corrected fork length (FL) of pollock consumed was 42.4 ±11.6 cm (range=10.0−78.1 cm, n=909). Adult pollock (FL>45.0 cm) occurred more frequently in scats collected from rookeries along the open ocean coastline of Southeast Alaska during June and July (74% adults, mean FL=48.4 cm) than they did in scats from haul-outs located in inside waters between October and May (51% adults, mean FL=38.4 cm). Overall, the contribution of juvenile pollock (≤20 cm) to the sea lion diet was insignificant; whereas adults contributed 44% to the diet by number and 74% by mass. On average, larger pollock were eaten in summer at rookeries throughout Southeast Alaska than at rookeries in the Gulf of Alaska and the Bering Sea. Overall it appears that Steller sea lions are capable of consuming a wide size range of pollock, and the bulk of fish fall between 20 and 60 cm. The use of cranial hard parts other than otoliths and the application of digestion correction factors are fundamental to correctly estimating the sizes of prey consumed by sea lions and determining the extent that these sizes overlap with the sizes of pollock caught by commercial fisheries.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Blue (Callinectes sapidus)(Portunidae),lady (Ovalipes ocellatus)(Portunidae), and Atlantic rock (Cancer irroratus) (Cancridae) crabs inhabit estuaries on the northeast United States coast for parts or all of their life cycles. Their distributions overlap or cross during certain seasons. During a 1991–1994 monthly otter trawl survey in the Hudson-Raritan Estuary between New York and New Jersey, blue and lady crabs were collected in warmer months and Atlantic rock crabs in colder months. Sex ratios, male:female, of mature crabs were 1:2.0 for blue crabs, 1:3.1 for lady crabs, and 21.4:1 for Atlantic rock crabs. Crabs, 1286 in total, were subsampled for dietary analysis, and the dominant prey taxa for all crabs, by volume of foregut contents, were mollusks and crustaceans. The proportion of amphipods and shrimp in diets decreased as crab size increased. Trophic niche breadth was widest for blue crabs, narrower for lady crabs, and narrowest for Atlantic rock crabs. Trophic overlap was lowest between lady crabs and Atlantic rock crabs, mainly because of frequent consumption of the dwarf surfclam (Mulinia lateralis) by the former and the blue mussel (Mytilus edulis) by the latter. The result of cluster analysis showed that size class and location of capture of predators in the estuary were more influential on diet than the species or sex of the predators.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The stomach contents of the minimal armhook squid (Berryteuthis anonychus) were examined for 338 specimens captured in the northeast Pacific during May 1999. The specimens were collected at seven stations between 145−165°W and 39−49°N and ranged in mantle length from 10.3 to 102.2 mm. Their diet comprised seven major prey groups (copepods, chaetognaths, amphipods, euphausiids, ostracods, unidentified fish, and unidentified gelatinous prey) and was dominated by copepods and chaetognaths. Copepod prey comprised four genera, and 86% by number of the copepods were from the genus Neocalanus. Neocalanus cristatus was the most abundant prey taxa, composing 50% by mass and 35% by number of the total diet. Parasagitta elegans (Chaetognatha) occurred in more stomachs (47%) than any other prey taxon. Amphipods occurred in 19% of the stomachs but composed only 5% by number and 3% by mass of the total prey consumed. The four remaining prey groups (euphausiids, ostracods, unidentified fish, and unidentified gelatinous prey) together composed <2% by mass and <1% by number of the diet. There was no major change in the diet through the size range of squid examined and no evidence of cannibalism or predation on other cephalopod species.