890 resultados para poly(phenylene vinylene) and derivatives
Resumo:
Molecular-level interactions are found to bind iron tetrasulfonated phthalocyanine (FeTsPc) and the polyelectrolyte poly(allylamine hydrochloride) (PAH) in electroactive layer-by-layer (LBL) films. These interactions have been identified by comparing Fourier transform infrared (FTIR) and Raman spectroscopy data from bulk samples of FeTsPc and PAH with those from FeTsPc/PAH LBL films. of particular importance were the SO3- -NH3 interactions that we believe to bind PAH and FeTsPc and the interactions between unprotonated amine groups of PAH and the coordinating metal of the phthalocyanine. The multilayer formation was monitored via UV-vis spectroscopy by measuring the increase in the Q band of FeTsPc at 676 nm. Film thickness estimated with profilometry was ca. I I Angstrom per bilayer for films adsorbed on glass. Reflection absorption infrared spectroscopy (RAIRS) revealed an anisotropy in the LBL film adsorbed on gold with FeTsPc molecules oriented perpendicularly to the substrate plane. Cyclic voltammograms showed reproducible pairs of oxidation-reduction peaks at 1.07 and 0.81 V, respectively, for a 50-bilayer PAH/FeTsPc film at 50 mV/s (vs Ag/Ag+). The peak shape and current dependence on the scan rate suggest that the process is a diffusion controlled charge transport. In the presence of dopamine, the electroactivity of FeTsPc/PAH LBL films vanishes due to a passivation effect. Dopamine activity is not detected either because the interaction between Fe atoms and NH2 groups prevents dopamine molecules from coordinating with the Fe atoms.
Resumo:
Cromoglycate is accumulated on a poly-L-lysine (PLL) modified carbon electrode best from pH 4 solution, where it is anionic and the PLL is cationic, and at which pH the cromoglycate gives a good reduction peak at -0.82 V. The PLL film can be regenerated readily by washing the electrode with 3 M sodium hydroxide solution, in which the PLL is deprotonated. Regeneration of the film is not required as frequently when larger amounts of PLL are incorporated into it. This allows standard addition procedures to be carried out without regenerating the electrode. Linear calibration graphs have been obtained typically in the range 0.1 - 1.5 mug ml(-1). Detection limits have been calculated to be 10 ng ml(-1). The standard addition method has been applied satisfactorily to diluted urine solutions. (C) 2003 Elsevier B.V. B.V. All rights reserved.
Resumo:
It is shown that the adsorption and morphological properties of layer-by-layer films of poly(o-methoxyaniline) (POMA) alternated with poly(vinyl sulfonic acid) (PVS) are affected dramatically by different treatments of the POMA solutions employed to prepare the films. Whereas the dimension of the globular structures seen by atomic force microscopy increases non monotonically during film growth in parent POMA solution, owing to a competition of adsorption/desorption processes, it changes monotonically for the fractionated POMA. The roughness of the latter films depends on the concentration of the solution and saturates at a given size of the scan window. This allowed us to apply scaling laws that indicated a self-affine mechanism for adsorption of the treated POMA.
Resumo:
The detection limit (about 0.017 mu g mL(-1)) for voltammetric determination of iodide (peak at +0.87 V vs. Ag/AgCl at pH 2) at a glutaraldehyde-cross-linked poly-L-lysine modified glassy carbon electrode involving oxidation to iodine was found to be several orders of magnitude lower than that for the voltammetric determination on a bare glassy carbon electrode. This method was applied successfully to the determination of iodide in two medicinal formulations. Idoxuridine was determined indirectly at the same electrode by accumulating it first at -0.8 V vs. Ag/AgCl. At this potential the C-I bond in the adsorbed idoxuridine is reduced giving iodide, which is then determined at the modified electrode. The method was successfully applied to the determination of idoxuridine in a urine sample.
Resumo:
Spectroscopic properties of blends formed by bisphenol-A polycarbonate (PC) and poly(methyl methacrylate) (PMMA) doped with Europium (III) acetylacetonate [Eu(acac)(3)], have been studied by photoacoustic spectroscopy (PAS) and photoluminescent (PL) spectroscopy. Emission and excitation spectra, excited state decay times, and quantum efficiency have been evaluated as well. PAS studies evidenced chemical interactions between the Europium complex and the PC/PMMA blend, which presented typical percolation threshold behavior regarding the Eu3+ content. PL spectra evidenced the photoluminescence of the Eu3+ incorporated into the blend. Photoluminescence property enhancement was observed for the composite in comparison with the precursor compound. Optimized emission quantum efficiency was observed for the 60/40 blend doped with 2% and 4% Europium (III) acetylacetonate. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
To explore three possible binding sites of trypanothione and glutathione reductase, namely, the active, the dimer interface and the coenzyme NADPH binding site, a series of eight compounds, nitrofurans and nitrothiophenes derivatives, were docked, using their crystallographic and modeled conformations. Docking results showed that, for both families and both enzymes, compounds are more likely to bind in the interface site, even though there is some probability of binding in the active site. These studies are in agreement with experimental data, which suggest that these class of compounds can act either as uncompetitive or mixed type inhibitors, and also with the finding that there is an alpha-helix which connects the active with the interface site, thus allowing charge transference between them. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
We have studied the thermal decomposition of the microcrystalline cellulose and some of its derivative such as pure carboxymethylcellulose (CMCH), phosphate cellulose (FOSCEL) and oxycellulose (OXICEL) and also these same derivatives containing adsorbed cadmium cations. We have used the TG,DTG tecniques in order to determine the quantity of retained cadmium II cations on the surface of these adsorbents.
Resumo:
This paper is aimed at addressing the differences observed in film properties when poly(vinylidene fluoride-trifluorethylene) P(VDF-TrFE) films are fabricated using distinct methods. Samples were obtained either from casting a solution or by compression molding from a molten phase and characterized by differential scanning calorimetry (DSC). It is shown that the main differences between melt-solidified and cast films arise from the thermal treatment inherent in the former samples.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Piper crassinervium, P. aduncum, P. hostmannianum, and P. gaudichaudianum contain the new benzoic acid derivatives crassinervic acid (1), aduncumene (8), hostmaniane (18), and gaudichaudianic acid (20), respectively, as major secondary metabolites. Additionally, 19 known compounds such as benzoic acids, chromenes, and flavonoids were isolated and identified. The antifungal activity of these compounds was evaluated by bioautographic TLC assay against Cladosporium cladosporioides and C. sphaerospermum.
Resumo:
1-Benzoyl-3-benzylguanidine and 1-benzoyl-3-benzyl-O-ethylisourea were synthesized in good yields (68 and 76%, respectively) from 1-benzoyl-3-benzylthiourea and benzoyl-ethylthiocarbamate in dry media conditions using KF-Al2O3 under microwave irradiation. Strong nucleophilic amines promoted the sulfur elimination by attack on the thiocarbonyl group in both thiourea and thiocarbamates to afford guanidines and isourea, respectively. Transesterification products were obtained from p-TsOH catalyzed reaction of thiocarbamate with alcohols under MW-solvent-free conditions. Very important non-purely thermal MW specific effects were evidenced and attributed to stabilization by coulombic interactions between materials and waves. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
A kraft lignin derivative (KLD) obtained by reaction with p-aminobenzoic acid/phthalic anhydride was blended with poly(vinyl alcohol) (PVA) by solution casting from DMSO. PVA and PVA/KLD films were exposed to ultraviolet radiation (24, 48, and 96 h) and analyzed by thermogravimetry (TG), differential scanning calorimetry (DSC), infrared spectroscopy (FTIR), hydrogen nuclear magnetic resonance (H-1 NMR) spectroscopy, and scanning electron microscopy (SEM). PVA films show a loss of thermal stability due to irradiation. PVA/KLD reveals greater thermal stability than PVA and an increase in thermal stability after irradiation. These results suggest that the incorporation of KLD into PVA provides a gain in thermal and photochemical stability. FTIR, H-1 NMR, DSC, and TG results obtained for the blends suggest that intermolecular interactions between PVA and KLD chains are present. SEM micrographs revealed blend miscibility for a KLD blend content of up to 15 wt%, as observed at magnification of 1000 times. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Natural or synthetic materials may be used to aid tissue repair of fracture or pathologies where there has been a loss of bone mass. Polymeric materials have been widely studied, aiming at their use in orthopaedics and aesthetic plastic surgery. Polymeric biodegradable blends formed from two or more kinds of polymers could present faster degradation rate than homopolymers. The purpose of this work was to compare the biological response of two biomaterials: poly(L-lactic acid)PLLA and poly(L-lactic acid)PLLA/poly(ethylene oxide)PEO blend. Forty four-week-old rats were divided into two groups of 20 animals, of which one group received PLLA and the other PLLA/PEO implants. In each of the animals, one of the biomaterials was implanted in the proximal epiphysis of the right tibia. Each group was divided into subgroups of 5 animals, and sacrificed 2, 4, 8 and 16 weeks after surgery, respectively. Samples were then processed for analysis by light microscopy. Newly formed bone was found around both PLLA and PLLA/PEO implants. PLLA/PEO blends had a porous morphology after immersion in a buffer solution and in vivo implantation. The proportion 50/50 PLLA/PEO blend was adequate to promote this porous morphology, which resulted in gradual bone tissue growth into the implant.
Resumo:
Local anesthetics are able to induce pain relief since they bind to the sodium channel of excitable membranes, blocking the influx of sodium ions and the propagation of the nervous impulse. Benzocaine (BZC) is a local anesthetic that presents limited application in topical formulations due to its low water-solubility. This study aimed to develop polymeric nanocapsules as a drug delivery system for the local anesthetic benzocaine (BZC). To do so, BZC loaded poly(D,L-lactide-co-glycolide) (PLGA) nanocapsules were prepared using the nanoprecipitation method and were characterized. The factorial experimental design was used to study the influence of four different independent variables oil response to nanocapsules drug loading. The physical characteristics of PLGA nanocapsules were evaluated by analyzing the particle size, the polydispersion index and the zeta potential, using a particle size analyzer. The results of the optimized formulation showed a size distribution with a polydispersity index of 0.12. an average diameter of 123 nm, zeta potential of -33.6 mV and a drug loading of more than 69%. The release profiles showed a significant difference in the release behavior for the pure drug in solution when compared with that containing benzocaine loaded PLGA nanocapsules. Thus, the prepared nonocapsules described here may be of clinical importance in both the processes of stabilization and delivery of benzocaine for pain treatment. (c) 2009 Elsevier B.V. All rights reserved.