928 resultados para physiological specialization
Resumo:
Cortical pyramidal cells, while having a characteristic morphology, show marked phenotypic variation in primates. Differences have been reported in their size, branching structure and spine density between cortical areas. In particular, there is a systematic increase in the complexity of the structure of pyramidal cells with anterior progression through occipito-temporal cortical visual areas. These differences reflect area-specific specializations in cortical circuitry, which are believed to be important for visual processing. However, it remains unknown as to whether these regional specializations in pyramidal cell structure are restricted to primates. Here we investigated pyramidal cell structure in the visual cortex of the tree shrew, including the primary (V1), second (V2) and temporal dorsal (TD) areas. As in primates, there was a trend for more complex branching structure with anterior progression through visual areas in the tree shrew. However, contrary to the trend reported in primates, cells in the tree shrew tended to become smaller with anterior progression through V1, V2 and TD. In addition, pyramidal cells in V1 of the tree shrew are more than twice as spinous as those in primates. These data suggest that variables that shape the structure of adult cortical pyramidal cells differ among species.
Resumo:
Recent studies have revealed marked differences in the basal dendritic structure of layer III pyramidal cells in the cerebral cortex of adult simian primates. In particular, there is a consistent trend for pyramidal cells of increasing complexity with anterior progression through occipitotemporal cortical visual areas. These differences in pyramidal cell structure, and their systematic nature, are believed to be important for specialized aspects of visual processing within, and between, cortical areas. However, it remains unknown whether this regional specialization in the pyramidal cell phenotype is unique to simians, is unique to primates in general or is widespread amongst mammalian species. In the present study we investigated pyramidal cell structure in the prosimian galago (Otolemur garnetti). We found, as in simians, that the basal dendritic arbors of pyramidal cells differed between cortical areas. More specifically, pyramidal cells became progressively more spinous through the primary (V1), second (V2), dorsolateral (DL) and inferotemporal ( IT) visual areas. Moreover, pyramidal neurons in V1 of the galago are remarkably similar to those in other primate species, in spite of large differences in the sizes of this area. In contrast, pyramidal cells in inferotemporal cortex are quite variable among primate species. These data suggest that regional specialization in pyramidal cell phenotype was a likely feature of cortex in a common ancestor of simian and prosimian primates, but the degree of specialization varies between species. Copyright (C) 2005 S. Karger AG, Basel.
Resumo:
The purpose of this study was to investigate the response of horses to confinement and isolation in a stable (indoor individual housing) for the first time using behavioral indices, heart rate, and salivary cortisol concentration. Six naive 2-year-old Australian Stock Horse fillies were examined at 4-hour intervals over 24 hours in an outdoor group paddock followed by 24 hours in indoor individual housing. Behavioral observations and scores and heart rates were recorded and saliva samples were taken at each interval. During stabling, all horses became agitated and demonstrated increased vocalization and movement. Behavioral scores were significantly higher in the indoor individual housing (P
Resumo:
This study compared the effect of load distribution using two different webbing designs on oxygen consumption and running kinematics of soldiers. It was hypothesised that running with webbing that distributes the load closer to the body (M83 Assault Vest) would expend less energy compared to running with conventional webbing (CON). Seven soldiers randomly completed three treadmill trials; an unloaded VO(2)max test, and two loaded (8 kg) efficiency tests using either the M83 or CON webbing. The VO(2)max test and the loaded efficiency tests had 4-min stages at 5, 8, 10 and 12km h(-1). Energy expenditure was measured via indirect calorimetry and video analysis was used to determine stride frequency (SF) and stride length (SL) during each trial. Participants using the M83 webbing expended significantly (p < 0.05) less energy at all four running velocities compared to the CON trials. The M83 webbing resulted in smaller changes to SL and SF from the unloaded trial when compared to the CON trial. These results indicate that the M83 vest that is designed to distribute the load closer to the body may have an energy efficiency advantage over conventional webbing when soldiers are running. (C) 2004 Published by Elsevier Ltd.
Resumo:
Introduced species are an increasingly pervasive problem. While studies on the ecology and behavior of these pests are numerous, there is relatively little known of their physiology, specifically their reproductive and stress physiology. One of the best documented introduced pest species is the brown tree snake, Boiga irregularis, which was introduced onto the Pacific island of Guam sometime around World War II. The snake is responsible for severely reducing Guam's native vertebrates. We captured free-living individuals throughout the year and measured plasma levels of stress and sex hormones in an effort to determine when they were breeding. These data were compared to reproductive cycles from a captive population originally collected from Guam. Free-living individuals had chronically elevated plasma levels of the stress hormone corticosterone and basal levels of sex steroids and a remarkably low proportion were reproductively active. These data coincide with evidence that the wild population may be in decline. Captive snakes, had low plasma levels of corticosterone with males displaying a peak in plasma testosterone levels during breeding. Furthermore, we compared body condition between the free-living and captive snakes from Guam and free-living individuals captured from their native range in Australia. Male and female free-living snakes from Guam exhibited significantly reduced body condition compared to free-living individuals from Australia. We suggest that during the study period, free-living brown tree snakes on Guam were living under stressful conditions, possibly due to overcrowding and overexploitation. of food resources, resulting in decreased body condition and suppressed reproduction. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
High-intensity exercise leads to reductions in muscle substrates (ATP, PCr, and glycogen) and a subsequent accumulation of metabolites (ADP, Pi, H+, and M2+) with a possible increase in free radical production. These factors independently and collectively have deleterious effects on muscle, with significant repercussions on high-intensity performance or training sessions. The effect of carnosine on overcoming muscle fatigue appears to be related to its ability to buffer the increased H+ concentration following high-intensity work. Carnosine, however, has other roles such as an antioxidant, a metal chelator, a Ca2+ and enzyme regulator, an inhibitor of protein glycosylation and protein-protein cross-linking. To date, only 1 study has investigated the effects of carnosine supplementation (not in pure form) on exercise performance in human subjects and found no improvement in repetitive high-intensity work. Much data has come from in vitro work on animal skeletal muscle fibers or other components of muscle contractile mechanisms. Thus further research needs to be carried out on humans to provide additional understanding on the effects of carnosine in vivo.
Resumo:
We review recent findings that, using fractal analysis, have demonstrated systematic regional and species differences in the branching complexity of neocortical pyramidal neurons. In particular, attention is focused on how fractal analysis is being applied to the study of specialization in pyramidal cell structure during the evolution of the primate cerebral cortex. These studies reveal variation in pyramidal cell phenotype that cannot be attributed solely to increasing brain volume. Moreover, the results of these studies suggest that the primate cerebral cortex is composed of neurons of different structural complexity. There is growing evidence to suggest that regional and species differences in neuronal structure influence function at both the cellular and circuit levels. These data challenge the prevailing dogma for cortical uniformity.
Resumo:
Pyramidal cell structure varies systematically in occipitotemporal visual areas in monkeys. The dendritic trees of pyramidal cells, on average, become larger, more branched and more spinous with progression from the primary visual area (V1) to the second visual area (V2), the fourth (V4, or dorsolateral DL visual area) and inferotemporal (IT) cortex. Presently available data reveal that the extent of this increase in complexity parallels the expansion of occipitotemporal cortex. Here we extend the basis for comparison by studying pyramidal cell structure in occipitotemporal cortical areas in the chacma baboon. We found a systematic increase in the size of and branching complexity in the basal dendritic trees, as well as a progressive increase in the spine density along the basal dendrites of layer III pyramidal cells through V1, V2 and V4. These data suggest that the trend for more complex pyramidal cells with anterior progression through occipitotemporal visual areas is not a feature restricted to monkeys and prosimians, but is a widespread feature of occipitotemporal cortex in primates.
Resumo:
The pyramidal cell phenotype varies quite dramatically in structure among different cortical areas in the primate brain. Comparative studies in visual cortex, in particular, but also in sensorimotor and prefrontal cortex, reveal systematic trends for pyramidal cell specialization in functionally related cortical areas. Moreover, there are systematic differences in the extent of these trends between different primate species. Recently we demonstrated differences in pyramidal cell structure in the cingulate cortex of the macaque monkey; however, in the absence of other comparative data it remains unknown as to whether the neuronal phenotype differs in cingulate cortex between species. Here we extend the basis for comparison by studying the structure of the basal dendritic trees of layer III pyramidal cells in the posterior and anterior cingulate gyrus of the vervet monkey (Brodmann's areas 23 and 24, respectively). Cells were injected with Lucifer Yellow in flat-mounted cortical slices, and processed for a light-stable DAB reaction product. Size, branching pattern, and spine density of basal dendritic arbors were determined, and somal areas measured. As in the macaque monkey, we found that pyramidal cells in anterior cingulate gyrus (area 24) were more branched and more spinous than those in posterior cingulate gyrus (area 23). In addition, the extent of the difference in pyramidal cell structure between these two cortical regions was less in the vervet monkey than in the macaque monkey.
Resumo:
The thermal dependence of biochemical reaction rates means that many animals regulate their body temperature so that fluctuations in body temperature are small compared to environmental temperature fluctuations. Thermoregulation is a complex process that involves sensing of the environment, and subsequent processing of the environmental information. We suggest that the physiological mechanisms that facilitate thermoregulation transcend phylogenetic boundaries. Reptiles are primarily used as model organisms for ecological and evolutionary research and, unlike in mammals, the physiological basis of many aspects in thermoregulation remains obscure. Here, we review recent research on regulation of body temperature, thermoreception, body temperature set-points, and cardiovascular control of heating and cooling in reptiles. The aim of this review is to place physiological thermoregulation of reptiles in a wider phylogenetic context. Future research on reptilian thermoregulation should focus on the pathways that connect peripheral sensing to central processing which will ultimately lead to the thermoregulatory response.
Resumo:
Introduction. Potentially modifiable physiological variables may influence stroke prognosis but their independence from modifiable factors remains unclear. Methods. Admission physiological measures (blood pressure, heart rate, temperature and blood glucose) and other unmodifiable factors were recorded from patients presenting within 48 hours of stroke. These variables were compared with the outcomes of death and death or dependency at 30 days in multivariate statistical models. Results. In the 186 patients included in the study, age, atrial fibrillation and the National Institutes of Health Stroke Score were identified as unmodifiable factors independently associated with death and death or dependency. After adjusting for these factors, none of the physiological variables were independently associated with death, while only diastolic blood pressure (DBP) >= 90 mmHg was associated with death or dependency at 30 days (p = 0.02). Conclusions. Except for elevated DBP, we found no independent associations between admission physiology and outcome at 30 days in an unselected stroke cohort. Future studies should look for associations in subgroups, or by analysing serial changes in physiology during the early post-stroke period.
Resumo:
The impact of ambient ultraviolet (UV)-B radiation on the endemic bryophyte, Grimmia antarctici, was studied over 14 months in East Antarctica. Over recent decades, Antarctic plants have been exposed to the largest relative increase in UV-B exposure as a result of ozone depletion. We investigated the effect of reduced UV and visible radiation on the pigment concentrations, surface reflectance and physiological and morphological parameters of this moss. Plexiglass screens were used to provide both reduced UV levels (77%) and a 50% decrease in total radiation. The screen combinations were used to separate UV photoprotective from visible photoprotective strategies, because these bryophytes are growing in relatively high light environments compared with many mosses. G. antarctici was affected negatively by ambient levels of UV radiation. Chlorophyll content was significantly lower in plants grown under near-ambient UV, while the relative proportions of photoprotective carotenoids, especially beta-carotene and zeaxanthin, increased. However, no evidence for the accumulation of UV-B-absorbing pigments in response to UV radiation was observed. Although photosynthetic rates were not affected, there was evidence of UV effects on morphology. Plants that were shaded showed fewer treatment responses and these were similar to the natural variation observed between moss growing on exposed microtopographical ridges and in more sheltered valleys within the turf. Given that other Antarctic bryophytes possess UV-B-absorbing pigments which should offer better protection under ambient UV-B radiation, these findings suggest that G. antarctici may be disadvantaged in some settings under a climate with continuing high levels of springtime UV-B radiation.
Resumo:
Comparative studies of autonomic and somatic reflexes, such as cardiac defense and motor startle, are rare. However, examination of the pattern of covariation, independence, or interference among physiological reflexes may help to clarify their functional significance and elucidate their complex modulation by psychological factors. Here we report the results of a study that examined the pattern of interference of eye-blink startle on subsequent cardiac defense. Participants were 63 students (31 women) distributed into three groups according to the sensory modality of the eliciting stimulus during the startle trials: acoustic high intensity (105 dB), acoustic low intensity (65 dB), and visual modality. Startle trials consisted of 12 presentations of the eliciting stimulus with a duration of 50 ms, instantaneous risetime, and a variable inter-stimulus interval of 16 – 20 s.Defense trials began 20 s after the last startle trial and consisted, for all groups, of 3 presentations of the high intensity acoustic stimulus with a duration of 500 ms and an inter-stimulus interval of 215 s. Results showed a clear interference of the startle trials on the subsequent defense trials when both types of trials shared identical sensory modality (acoustic) independently of intensity: the expected pattern of cardiac defense in the first trial only appeared in the visual modality. Similar interference effects were observed in the skin conductance response. Subjective reactivity to the defense stimulus did not detect differences between conditions.
Resumo:
Hermatypic-zooxanthellate corals track the diel patterns of the main environmental parameters temperature, UV and visible light - by acclimation processes that include biochemical responses. The diel course of solar radiation is followed by photosynthesis rates and thereby elicits simultaneous changes in tissue oxygen tension due to the shift in photosynthesis/respiration balance. The recurrent patterns of sunlight are reflected in fluorescence yields, photosynthetic pigment content and activity of the two protective enzymes superoxide dismutase (SOD) and catalase (CAT), enzymes that are among the universal defenses against free radical damage in living tissue. All of these were investigated in three scleractinian corals: Favia favus, Plerogyra sinuosa and Goniopora lobata. The activity of SOD and CAT in the animal host followed the course of solar radiation, increased with the rates of photosynthetic oxygen production and was correlated with a decrease in the maximum quantum yield of photochemistry in Photosystem H (PSII) (Delta F'/F-m'). SOD and CAT activity in the symbiotic algae also exhibited a light intensity correlated pattern, albeit a less pronounced one. The observed rise of the free-radical-scavenger enzymes, with a time scale of minutes to several hours, is an important protective mechanism for the existence and remarkable success of the unique cnidarian-dinoflagellate associations, in which photosynthetic oxygen production takes place within animal cells. This represents a facet of the precarious act of balancing the photosynthetic production of oxygen by the algal symbionts with their destructive action on all living cells, especially those of the animal host.