870 resultados para physical and chromatographic characterizations
Resumo:
Purpose NANA is a 3-year project using sensitively-designed technology to improve data collection and integrate information on nutrition, physical and cognitive function and mental health to identify individuals at risk of under-nourishment and improve targeting of interventions. This research will also improve our understanding of the interactions between these factors, in order to better medical treatment and social provision. The toolkit has potential for commercial development for additional segments of the population. Method This is a multi-disciplinary program involving psychology, nutrition, engineering and software engineering. The first phase is a user needs analysis and will involve consulting with a broad cross-section of older people, caregivers, and health professionals, to establish what technical approaches would be useful and acceptable. The second phase focuses on the development of an integrated measurement toolkit. There are three inter-related subsections: (i) an iterative program to develop the assessment technology, (ii) techniques for dietary assessment in older people, and (iii) a parallel investigation of measures of cognition and mental health in older people. It includes a full validation of the assessment toolkit and will comprise a comparison of the new, integrated assessment with traditional 'pen and paper' methods with volunteers having the equipment installed in their homes.
Resumo:
One of the greatest challenges we face in the twenty-first century is to sustainably feed nine to ten billion people by 2050 while at the same time reducing environmental impact (e.g. greenhouse gas (GHG) emissions, biodiversity loss, land use change and loss of ecosystem services). To this end, food security must be delivered. According to the United Nations definition, ‘food security exists when all people, at all times, have physical and economic access to sufficient,safe and nutritious food to meet their dietary needs and food preferences for an active and healthy life’. At the same time as delivering food security, we must also reduce the environmental impact of food production. Future climate change will make an impact upon food production. On the other hand, agriculture contributes up to about 30% of the anthropogenic GHG emissions that drive climate change. The aim of this review is to outline some of the likely impacts of climate change on agriculture, the mitigation measures available within agriculture to reduce GHG emissions and outlines the very significant challenge of feeding nine to ten billion people sustainably under a future climate, with reduced emissions of GHG. Each challenge is in itself enormous, requiring solutions that co-deliver on all aspects. We conclude that the status quo is not an option, and tinkering with the current production systems is unlikely to deliver the food and ecosystems services we need in the future; radical changes in production and consumption are likely to be required over the coming decades.
Resumo:
The societal need for reliable climate predictions and a proper assessment of their uncertainties is pressing. Uncertainties arise not only from initial conditions and forcing scenarios, but also from model formulation. Here, we identify and document three broad classes of problems, each representing what we regard to be an outstanding challenge in the area of mathematics applied to the climate system. First, there is the problem of the development and evaluation of simple physically based models of the global climate. Second, there is the problem of the development and evaluation of the components of complex models such as general circulation models. Third, there is the problem of the development and evaluation of appropriate statistical frameworks. We discuss these problems in turn, emphasizing the recent progress made by the papers presented in this Theme Issue. Many pressing challenges in climate science require closer collaboration between climate scientists, mathematicians and statisticians. We hope the papers contained in this Theme Issue will act as inspiration for such collaborations and for setting future research directions.
Resumo:
We investigate Fréchet differentiability of the scattered field with respect to variation in the boundary in the case of time–harmonic acoustic scattering by an unbounded, sound–soft, one–dimensional rough surface. We rigorously prove the differentiability of the scattered field and derive a characterization of the Fréchet derivative as the solution to a Dirichlet boundary value problem. As an application of these results we give rigorous error estimates for first–order perturbation theory, justifying small perturbation methods that have a long history in the engineering literature. As an application of our rigorous estimates we show that a plane acoustic wave incident on a sound–soft rough surface can produce an unbounded scattered field.
Resumo:
There is considerable interest in the use of porous asphalt (PA) surfacing on highways since physical and subjective assessments of noise have indicated a significant advantage over conventional non-porous surfaces such as hot rolled asphalt (HRA) used widely for motorway surfacing in the UK. However, it was not known whether the benefit of the PA surface was affected by the presence of roadside barriers. Noise predictions have been made using the Boundary Element Method (BEM) approach to determine the extent to which the noise reducing benefits of PA could be added to the screening effects of noise barriers in order to obtain the overall reduction in noise levels
Resumo:
The long time–evolution of disturbances to slowly–varying solutions of partial differential equations is subject to the adiabatic invariance of the wave action. Generally, this approximate conservation law is obtained under the assumption that the partial differential equations are derived from a variational principle or have a canonical Hamiltonian structure. Here, the wave action conservation is examined for equations that possess a non–canonical (Poisson) Hamiltonian structure. The linear evolution of disturbances in the form of slowly varying wavetrains is studied using a WKB expansion. The properties of the original Hamiltonian system strongly constrain the linear equations that are derived, and this is shown to lead to the adiabatic invariance of a wave action. The connection between this (approximate) invariance and the (exact) conservation laws of pseudo–energy and pseudomomentum that exist when the basic solution is exactly time and space independent is discussed. An evolution equation for the slowly varying phase of the wavetrain is also derived and related to Berry's phase.
Resumo:
Radiometric data in the visible domain acquired by satellite remote sensing have proven to be powerful for monitoring the states of the ocean, both physical and biological. With the help of these data it is possible to understand certain variations in biological responses of marine phytoplankton on ecological time scales. Here, we implement a sequential data-assimilation technique to estimate from a conventional nutrient–phytoplankton–zooplankton (NPZ) model the time variations of observed and unobserved variables. In addition, we estimate the time evolution of two biological parameters, namely, the specific growth rate and specific mortality of phytoplankton. Our study demonstrates that: (i) the series of time-varying estimates of specific growth rate obtained by sequential data assimilation improves the fitting of the NPZ model to the satellite-derived time series: the model trajectories are closer to the observations than those obtained by implementing static values of the parameter; (ii) the estimates of unobserved variables, i.e., nutrient and zooplankton, obtained from an NPZ model by implementation of a pre-defined parameter evolution can be different from those obtained on applying the sequences of parameters estimated by assimilation; and (iii) the maximum estimated specific growth rate of phytoplankton in the study area is more sensitive to the sea-surface temperature than would be predicted by temperature-dependent functions reported previously. The overall results of the study are potentially useful for enhancing our understanding of the biological response of phytoplankton in a changing environment.
Resumo:
An initial validation of the Along Track Scanning Radiometer (ATSR) Reprocessing for Climate (ARC) retrievals of sea surface temperature (SST) is presented. ATSR-2 and Advanced ATSR (AATSR) SST estimates are compared to drifting buoy and moored buoy observations over the period 1995 to 2008. The primary ATSR estimates are of skin SST, whereas buoys measure SST below the surface. Adjustment is therefore made for the skin effect, for diurnal stratification and for differences in buoy–satellite observation time. With such adjustments, satellite-in situ differences are consistent between day and night within ~ 0.01 K. Satellite-in situ differences are correlated with differences in observation time, because of the diurnal warming and cooling of the ocean. The data are used to verify the average behaviour of physical and empirical models of the warming/cooling rates. Systematic differences between adjusted AATSR and in-situ SSTs against latitude, total column water vapour (TCWV), and wind speed are less than 0.1 K, for all except the most extreme cases (TCWV < 5 kg m–2, TCWV > 60 kg m–2). For all types of retrieval except the nadir-only two-channel (N2), regional biases are less than 0.1 K for 80% of the ocean. Global comparison against drifting buoys shows night time dual-view two-channel (D2) SSTs are warm by 0.06 ± 0.23 K and dual-view three-channel (D3) SSTs are warm by 0.06 ± 0.21 K (day-time D2: 0.07 ± 0.23 K). Nadir-only results are N2: 0.03 ± 0.33 K and N3: 0.03 ± 0.19 K showing the improved inter-algorithm consistency to ~ 0.02 K. This represents a marked improvement from the existing operational retrieval algorithms for which inter-algorithm inconsistency is > 0.5 K. Comparison against tropical moored buoys, which are more accurate than drifting buoys, gives lower error estimates (N3: 0.02 ± 0.13 K, D2: 0.03 ± 0.18 K). Comparable results are obtained for ATSR-2, except that the ATSR-2 SSTs are around 0.1 K warm compared to AATSR
Resumo:
Background: Affymetrix GeneChip arrays are widely used for transcriptomic studies in a diverse range of species. Each gene is represented on a GeneChip array by a probe- set, consisting of up to 16 probe-pairs. Signal intensities across probe- pairs within a probe-set vary in part due to different physical hybridisation characteristics of individual probes with their target labelled transcripts. We have previously developed a technique to study the transcriptomes of heterologous species based on hybridising genomic DNA (gDNA) to a GeneChip array designed for a different species, and subsequently using only those probes with good homology. Results: Here we have investigated the effects of hybridising homologous species gDNA to study the transcriptomes of species for which the arrays have been designed. Genomic DNA from Arabidopsis thaliana and rice (Oryza sativa) were hybridised to the Affymetrix Arabidopsis ATH1 and Rice Genome GeneChip arrays respectively. Probe selection based on gDNA hybridisation intensity increased the number of genes identified as significantly differentially expressed in two published studies of Arabidopsis development, and optimised the analysis of technical replicates obtained from pooled samples of RNA from rice. Conclusion: This mixed physical and bioinformatics approach can be used to optimise estimates of gene expression when using GeneChip arrays.
Resumo:
In this paper we show how a seemingly unremarkable object – a cattle grid – has come to presence climate change in partial and contingent ways on the Lizard Peninsula, Cornwall, UK. We identify the cattle grid as an ‘anticipatory object’ through which conservation organisations seek to manage the future and adapt to climate change, but which at the same time presences that unthought-of future for others in the landscape. We explore the ways in which the cattle grid acts to presence something that is not only absent – climate change – but has uncertain imminence. We investigate the ways in which the cattle grid make climate relevant as an embodied and experiential process, a physical and intellectual artefact, and the means to imagine climate and the ways it might change. Drawing upon interpretative approaches informed by theorisations of materiality, presence and absence to understand climate change as a social phenomenon, we go beyond a consideration of this ordinary object defined by its function to consider how the object is experienced, the processes and practices through which people relate to it, and the ways in which social meaning accumulates around it. The empirical basis for this argument is provided by in-depth interviews with local representatives of Natural England, residents and farmers.
Resumo:
The intention of this review is to place crop albedo biogeoengineering in the wider picture of climate manipulation. Crop biogeoengineering is considered within the context of the long-term modification of the land surface for agriculture over several thousand years. Biogeoengineering is also critiqued in relation to other geoengineering schemes in terms of mitigation power and adherence to social principles for geoengineering. Although its impact is small and regional, crop biogeoengineering could be a useful and inexpensive component of an ensemble of geoengineering schemes to provide temperature mitigation. The method should not detrimentally affect food security and there may even be positive impacts on crop productivity, although more laboratory and field research is required in this area to understand the underlying mechanisms.
Resumo:
We present a summary of the principal physical and optical properties of aerosol particles using the FAAM BAE-146 instrumented aircraft during ADRIEX between 27 August and 6 September 2004, augmented by sunphotometer, lidar and satellite retrievals. Observations of anthropogenic aerosol, principally from industrial sources, were concentrated over the northern Adriatic Sea and over the Po Valley close to the aerosol sources. An additional flight was also carried out over the Black Sea to compare east and west European pollution. Measurements show the single-scattering albedo of dry aerosol particles to vary considerably between 0.89 and 0.97 at a wavelength of 0.55 μm, with a campaign mean within the polluted lower free troposphere of 0.92. Although aerosol concentrations varied significantly from day to day and during individual days, the shape of the aerosol size distribution was relatively consistent through the experiment, with no detectable change observed over land and over sea. There is evidence to suggest that the pollution aerosol within the marine boundary layer was younger than that in the elevated layer. Trends in the aerosol volume distribution show consistency with multiple-site AERONET radiometric observations. The aerosol optical depths derived from aircraft measurements show a consistent bias to lower values than both the AERONET and lidar ground-based radiometric observations, differences which can be explained by local variations in the aerosol column loading and by some aircraft instrumental artefacts. Retrievals of the aerosol optical depth and fine-mode (<0.5 μm radius) fraction contribution to the optical depth using MODIS data from the Terra and Aqua satellites show a reasonable level of agreement with the AERONET and aircraft measurements.
Resumo:
Aerosols affect the Earth's energy budget directly by scattering and absorbing radiation and indirectly by acting as cloud condensation nuclei and, thereby, affecting cloud properties. However, large uncertainties exist in current estimates of aerosol forcing because of incomplete knowledge concerning the distribution and the physical and chemical properties of aerosols as well as aerosol-cloud interactions. In recent years, a great deal of effort has gone into improving measurements and datasets. It is thus feasible to shift the estimates of aerosol forcing from largely model-based to increasingly measurement-based. Our goal is to assess current observational capabilities and identify uncertainties in the aerosol direct forcing through comparisons of different methods with independent sources of uncertainties. Here we assess the aerosol optical depth (τ), direct radiative effect (DRE) by natural and anthropogenic aerosols, and direct climate forcing (DCF) by anthropogenic aerosols, focusing on satellite and ground-based measurements supplemented by global chemical transport model (CTM) simulations. The multi-spectral MODIS measures global distributions of aerosol optical depth (τ) on a daily scale, with a high accuracy of ±0.03±0.05τ over ocean. The annual average τ is about 0.14 over global ocean, of which about 21%±7% is contributed by human activities, as estimated by MODIS fine-mode fraction. The multi-angle MISR derives an annual average AOD of 0.23 over global land with an uncertainty of ~20% or ±0.05. These high-accuracy aerosol products and broadband flux measurements from CERES make it feasible to obtain observational constraints for the aerosol direct effect, especially over global the ocean. A number of measurement-based approaches estimate the clear-sky DRE (on solar radiation) at the top-of-atmosphere (TOA) to be about -5.5±0.2 Wm-2 (median ± standard error from various methods) over the global ocean. Accounting for thin cirrus contamination of the satellite derived aerosol field will reduce the TOA DRE to -5.0 Wm-2. Because of a lack of measurements of aerosol absorption and difficulty in characterizing land surface reflection, estimates of DRE over land and at the ocean surface are currently realized through a combination of satellite retrievals, surface measurements, and model simulations, and are less constrained. Over the oceans the surface DRE is estimated to be -8.8±0.7 Wm-2. Over land, an integration of satellite retrievals and model simulations derives a DRE of -4.9±0.7 Wm-2 and -11.8±1.9 Wm-2 at the TOA and surface, respectively. CTM simulations derive a wide range of DRE estimates that on average are smaller than the measurement-based DRE by about 30-40%, even after accounting for thin cirrus and cloud contamination. A number of issues remain. Current estimates of the aerosol direct effect over land are poorly constrained. Uncertainties of DRE estimates are also larger on regional scales than on a global scale and large discrepancies exist between different approaches. The characterization of aerosol absorption and vertical distribution remains challenging. The aerosol direct effect in the thermal infrared range and in cloudy conditions remains relatively unexplored and quite uncertain, because of a lack of global systematic aerosol vertical profile measurements. A coordinated research strategy needs to be developed for integration and assimilation of satellite measurements into models to constrain model simulations. Enhanced measurement capabilities in the next few years and high-level scientific cooperation will further advance our knowledge.
Resumo:
The catchment of the River Thames, the principal river system in southern England, provides the main water supply for London but is highly vulnerable to changes in climate, land use and population. The river is eutrophic with significant algal blooms with phosphorus assumed to be the primary chemical indicator of ecosystem health. In the Thames Basin, phosphorus is available from point sources such as wastewater treatment plants and from diffuse sources such as agriculture. In order to predict vulnerability to future change, the integrated catchments model for phosphorus (INCA-P) has been applied to the river basin and used to assess the cost-effectiveness of a range of mitigation and adaptation strategies. It is shown that scenarios of future climate and land-use change will exacerbate the water quality problems, but a range of mitigation measures can improve the situation. A cost-effectiveness study has been undertaken to compare the economic benefits of each mitigation measure and to assess the phosphorus reductions achieved. The most effective strategy is to reduce fertilizer use by 20% together with the treatment of effluent to a high standard. Such measures will reduce the instream phosphorus concentrations to close to the EU Water Framework Directive target for the Thames.
Resumo:
All of our knowledge of history is mediated in one way or another. Even the experience of first hand witnesses are, it may be argued, subject to semiotic influences such as physical and emotional position, attitudinal point of view and accuracy of recall. A great deal of historical knowledge is acquired through dramatised versions of historical events. As the characters who actually took part in historical events become the dramatis personae of re-enacted accounts, their stories are edited not only to meet dramatic necessities but the social, psychological and cultural needs of both storytellers and audience. The process of popularising history in this way thus becomes as much about the effects of events on people as the events themselves. This chapter describes and analyses the way in which four historical events have formed the basis of school based drama workshops that explore this process. The Player in Tom Stoppard’s ‘Rosencrantz and Guildenstern Are Dead’ posits that actors do on stage what others are supposed to do off, which, he claims, ‘is a kind of integrity.’ The chapter discusses how drama may be used to explore not only stories from history but how those stories may be mediated and so become open to multiple interpretations. The process of dramatising events from history provides opportunities to develop and exercise a critical literacy that is concerned not so much with either fact or empathy as with interrogating both why and how stories are told. Thus, the experience of exploring the symbiotic relationship between drama and history is dependent on an internal logic which may indeed be perceived as a kind of integrity.