985 resultados para phosphate buffer capacity
Resumo:
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is considered a housekeeping protein that is present in virtually all organisms, where it performs metabolic functions essential for survival. GAPDH plays an essential role in the process of energy production, and is also involved in numerous biological processes. GAPDH belongs to a subset of proteins called moonlighting proteins, in which different functions are associated with a single polypeptide chain. The multifunctionality of GAPDH has been described in pathogenic and probiotic microorganisms, in mammals and in plants. In this review, we summarize the moonlighting role of GAPDH in bacteria.
Resumo:
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is considered a housekeeping protein that is present in virtually all organisms, where it performs metabolic functions essential for survival. GAPDH plays an essential role in the process of energy production, and is also involved in numerous biological processes. GAPDH belongs to a subset of proteins called moonlighting proteins, in which different functions are associated with a single polypeptide chain. The multifunctionality of GAPDH has been described in pathogenic and probiotic microorganisms, in mammals and in plants. In this review, we summarize the moonlighting role of GAPDH in bacteria.
Resumo:
In this work, the artificial neural networks (ANN) and partial least squares (PLS) regression were applied to UV spectral data for quantitative determination of thiamin hydrochloride (VB1), riboflavin phosphate (VB2), pyridoxine hydrochloride (VB6) and nicotinamide (VPP) in pharmaceutical samples. For calibration purposes, commercial samples in 0.2 mol L-1 acetate buffer (pH 4.0) were employed as standards. The concentration ranges used in the calibration step were: 0.1 - 7.5 mg L-1 for VB1, 0.1 - 3.0 mg L-1 for VB2, 0.1 - 3.0 mg L-1 for VB6 and 0.4 - 30.0 mg L-1 for VPP. From the results it is possible to verify that both methods can be successfully applied for these determinations. The similar error values were obtained by using neural network or PLS methods. The proposed methodology is simple, rapid and can be easily used in quality control laboratories.
Resumo:
The present work analyzed the effect of the temperature and type of salt on the phase equilibrium of aqueous two-phase systems (ATPS) formed by poly (ethylene glycol) (PEG) 1500 + potassium phosphate, from (278.15 to 318.15) K, and PEG 1500 + sodium citrate, from (278.15 to 298.15) K. The rise of the temperature normally increased the slope of the tie line (STL). With respect to the influence of the type of salt, sodium citrate showed better capability to induce phase separation, when compared to potassium phosphate.
Resumo:
We hypothesized that the analysis of mRNA level and activity of key enzymes in amino acid and carbohydrate metabolism in a feeding/fasting/refeeding setting could improve our understanding of how a carnivorous fish, like the European seabass (Dicentrarchus labrax), responds to changes in dietary intake at the hepatic level. To this end cDNA fragments encoding genes for cytosolic and mitochondrial alanine aminotransferase (cALT; mALT), pyruvate kinase (PK), glucose 6-phosphate dehydrogenase (G6PDH) and 6-phosphogluconate dehydrogenase (6PGDH) were cloned and sequenced. Measurement of mRNA levels through quantitative real-time PCR performed in livers of fasted seabass revealed a significant increase in cALT (8.5-fold induction)while promoting a drastic 45-fold down-regulation of PK in relation to the levels found in fed seabass. These observations were corroborated by enzyme activity meaning that during food deprivation an increase in the capacity of pyruvate generation happened via alanine to offset the reduction in pyruvate derived via glycolysis. After a 3-day refeeding period cALT returned to control levels while PK was not able to rebound. No alterations were detected in the expression levels of G6PDH while 6PGDH was revealed to be more sensitive specially to fasting, as confirmed by a significant 5.7-fold decrease in mRNA levels with no recovery after refeeding. Our results indicate that in early stages of refeeding, the liver prioritized the restoration of systemic normoglycemia and replenishment of hepatic glycogen. In a later stage, once regular feeding is re-established, dietary fuel may then be channeled to glycolysis and de novo lipogenesis.
Resumo:
We hypothesized that the analysis of mRNA level and activity of key enzymes in amino acid and carbohydrate metabolism in a feeding/fasting/refeeding setting could improve our understanding of how a carnivorous fish, like the European seabass (Dicentrarchus labrax), responds to changes in dietary intake at the hepatic level. To this end cDNA fragments encoding genes for cytosolic and mitochondrial alanine aminotransferase (cALT; mALT), pyruvate kinase (PK), glucose 6-phosphate dehydrogenase (G6PDH) and 6-phosphogluconate dehydrogenase (6PGDH) were cloned and sequenced. Measurement of mRNA levels through quantitative real-time PCR performed in livers of fasted seabass revealed a significant increase in cALT (8.5-fold induction)while promoting a drastic 45-fold down-regulation of PK in relation to the levels found in fed seabass. These observations were corroborated by enzyme activity meaning that during food deprivation an increase in the capacity of pyruvate generation happened via alanine to offset the reduction in pyruvate derived via glycolysis. After a 3-day refeeding period cALT returned to control levels while PK was not able to rebound. No alterations were detected in the expression levels of G6PDH while 6PGDH was revealed to be more sensitive specially to fasting, as confirmed by a significant 5.7-fold decrease in mRNA levels with no recovery after refeeding. Our results indicate that in early stages of refeeding, the liver prioritized the restoration of systemic normoglycemia and replenishment of hepatic glycogen. In a later stage, once regular feeding is re-established, dietary fuel may then be channeled to glycolysis and de novo lipogenesis.
Resumo:
In this work, we provide an investigation of the role and strength of affinity interactions on the partitioning of the glucose-6-phosphate dehydrogenase in aqueous two-phase micellar systems. These systems are constituted of micellar surfactant solutions and offer both hydrophobic and hydrophilic environments, providing selectivity to biomolecules. We studied G6PD partitioning in systems composed of the nonionic surfactants, separately, in the presence and absence of affinity ligands. We observed that G6PD partitions to the micelle-poor phase, owing to the strength of excluded-volume interactions in these systems that drive the protein to the micelle-poor phase, where there is more free volume available.
Resumo:
A technique for both extraction and activity measurement of peroxidase extracted from arazá (Eugenia stipitata Mc Vaugh) is described. Peroxidase from arazá pulp fruit was extracted using a combination of protein precipitation with acetone and extraction with 50 mM sodium buffer phosphate (pH 6.0). Optimum activity using guaiacol as H-donor was obtained at pH from 5.0 to 6.5, temperature from 60 to 75 °C, H2O2 between 10 to 15 mM and guaiacol from 80 to 160 mM. Thermal inactivation showed a first-order inactivation kinetic. Reactivation was observed when extracts were heated at 80 °C and afterwards incubated at 25 °C.
Resumo:
In the article we resume four experiments of an interdisciplinary nature carried out in four different secondary education centres. The nexus of the union of these didactic proposals is that of looking at values in sport and the critical capacity of the students from distinct perspectives: violence, mass media, politics and gender and the treatment of body in our society
Resumo:
The present work aimed to characterize an aluminum industry by-product in natura (L.A. nat) and after phosphate and thermal pretreatments; evaluate the adsorption/desorption capacity of Cd and Pb by this L.A. nat form and after the aforementioned pretreatments, comparing them with an in natura iron mining by-product (L.F. nat). The L.A. nat presented a high pH as well as a high Na concentration and also an oxide-rich mineralogy. Pretreatment of the by-product had no significant effect upon Cd and Pd adsorption/desorption. The L.A. nat performed better than the L.F. nat as an Cd and Pb adsorbent.
Resumo:
Toxicity and antioxidant capacity of eugenol derivatives (E2 = 2-Methoxy-4-[1-propenylphenyl]acetate, E3 = 4-Allyl-2-methoxyphenylacetate, E4 = 4-Allyl-2-methoxy-4-nitrophenol, E5 = 5-Allyl-3-nitrobenzene-1,2-diol, E6 = 4-Allyl-2-methoxy-5-nitrophenyl acetate) were evaluated in order to determine the influence of the sustituents. E2-E6 were synthesized from eugenol (E1). E1 was extracted from cloves oil, and E2-E6 were obtained through acetylation and nitration reactions. Antioxidant capacity evaluated by DPPH (1, 1-Diphenyl-2-picrylhydrazil) and ORAC fluorescein demonstrated that E1 and E5 have a higher capacity and the minor toxicity evaluated by red blood cells haemolysis and the Artemia saline test. In accordance with our results, the compound's (E1-E5) use in the pharmaceutical, cosmetic and or food industries could be suggested.
Resumo:
The polyphenol contents and antioxidant capacity of Brazilian red grape juices and wine vinegars were analyzed. Additionally, it was analyzed the human polyphenol absorption and acute effect in plasmatic oxidative metabolism biomarkers after juice ingestion. The organic Bordo grape juice (GBO) presented a higher level of trans-resveratrol, quercitin, rutin, gallic acid, caffeic acid and total flavonoids then other juices and vinegars as well as antioxidant capacity. The plasmatic polyphenol increased 27.2% after GBO juice ingestion. The results showed that juices and vinegars from Brazilian crops present similar chemical and functional properties described in studies performed in other countries.
Resumo:
The content of isoorientin in passion fruit rinds (Passiflora edulis fo. flavicarpa O. Degener) was determined by HPTLC (high performance thin layer chromatography) with densitometric analysis. The results revealed a higher amount of isoorientin in healthy rinds of P. edulis (92.275 ± 0.610 mg L-1) than in rinds with typical symptoms of PWV (Passion fruit Woodiness Virus) infection (28.931 ± 0.346 mg L-1). The HPTLC data, allied to assays of radical scavenging activity, suggest the potential of P. edulis rinds as a natural source of flavonoids or as a possible functional food.
Resumo:
The present paper focuses on improving chromium (III) uptake capacity of sugarcane bagasse through its chemical modification with citric acid and/or sodium hydroxide. The chemical modifications were confirmed by infrared spectroscopy, with an evident peak observed at 1730 cm-1, attributed to carbonyl groups. Equilibrium was reached after 24 h, and the kinetics followed the pseudo-second-order model. The highest chromium (III) maximum adsorption capacity (MAC) value was found when using sugarcane bagasse modified with sodium hydroxide and citric acid (58.00 mg g-1) giving a MAC value about three times greater (20.34 mg g-1) than for raw sugarcane bagasse.
Resumo:
A full two-level factorial design was employed to study the influence of PEG molar mass (MM PEG), PEG concentration (C PEG) and phosphate concentration (C PHOSPH) on proteases partition by Lentinus citrinus DPUA 1535 in a PEG/phosphate aqueous two-phase system (ATPS). For all ATPS studied, proteases partitioned for the top phase and the best proteases extraction condition was obtained with MM PEG = 6000 g mol-1, C PEG = 17.5% (w/w) and C PHOSPH = 25% (w/w) with (1.1) purification factor and (151%) activity yield. Findings reported here demonstrate a practical strategy that serves as a first step for proteases purification from crude extract by L. citrinus.