868 resultados para peritrophic membrane
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Chronic hepatitis C virus (HCV) infection is a worldwide health problem that may evolve to cirrhosis and hepatocellular carcinoma. Incompletely understood immune system mechanisms have been associated with impaired viral clearance. The nonclassical class I human leukocyte antigen G (HLA-G) molecule may downregulate immune system cell functions exhibiting well-recognized tolerogenic properties. HCV genotype was analyzed in chronic HCV-infected patients. Because HLA-G expression may be induced by certain viruses, we evaluated the presence of HLA-G in the liver microenvironment obtained from 89 biopsies of patients harboring chronic HCV infection and stratified according to clinical and histopathological features. Overall, data indicated that HCV genotype 1 was predominant, especially subgenotype 1a, with a prevalence of 87%. HLA-G expression was observed in 45(51%) liver specimens, and it was more frequent in milder stages of chronic hepatitis (67.4%) than in moderate (27.8%; p = 0.009) and severe (36.0%; p = 0.021) stages of the disease. Altogether, these results suggest that the expression of HLA-G in the context of HCV is a complex process modulated by many factors, which may contribute to an immunologic environment favoring viral persistence. However, because the milder forms predominantly expressed HLA-G, a protective role of this molecule may not be excluded. (C) 2012 American Society for Histocompatibility and Immunogenetics. Published by Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A clinical review of three potentially severe fungal diseases, which are characterized in many cases by mucosal involvement, is presented. They are paracoccidioidomycosis, histoplasmosis, and mucormycosis. Mucosal involvement for paracoccidioidomycosis and rhinocerebral mucormycosis is frequent. Thus, oral involvement may provide early clue for diagnosis. In paracoccidioidomycosis, the mucosal lesion classically shows superficial ulcers with granular appearance and hemorrhagic points, usually on lips, palate, and jugal mucosa. In mucormycosis, necrosis of the palate followed for purulent discharge is a hallmark of rhinocerebral disease. Treatment with amphotericin B desoxycholate or the new second-generation triazoles is highly efficacious.
Resumo:
Background: Barrier materials as cellulose membranes are used for guided tissue repair. However, it is essential that the surrounding tissues accept the device. The present study histologically evaluated tissue reaction to a microbial cellulose membrane after subcutaneous implantation in mice. Furthermore, the interaction between mesenchymal stem cells and the biomaterial was studied in vitro to evaluate its ability to act as cellular scaffold for tissue engineering.Methods: Twenty-five Swiss Albino mice were used. A 10 x 10 mm cellulose membrane obtained through biosynthesis using Acetobacter xylinum bacteria was implanted into the lumbar subcutaneous tissue of each mouse. The mice were euthanatized at seven, 15, 30, 60, and 90 days, and the membrane and surrounding tissues were collected and examined by histology.Results: A mild inflammatory response without foreign body reaction was observed until 30 days post-surgery around the implanted membrane. Polarized microscopy revealed that the membrane remained intact at all evaluation points. Scanning electron microscopy of the cellulose membrane surface showed absence of pores. The in vitro evaluation of the interaction between cells and biomaterial was performed through viability staining analysis of the cells over the biomaterial, which showed that 95% of the mesenchymal stem cells aggregating to the cellulose membrane were alive and that 5% were necrotic. Scanning electron microscopy showed mesenchymal stem cells with normal morphology and attached to the cellulose membrane surface.Conclusion: The microbial cellulose membrane evaluated was found to be nonresorbable, induced a mild inflammatory response and may prove useful as a scaffold for mesenchymal stem cells.
Resumo:
The objective of this work was to describe the presence of osteopontin (OPN) in canine seminal plasma and sperm membranes. A pool of seminal plasma and sperm membrane extract from 30 dogs was used. Polyacrylamide electrophoresis gels were performed and the bands were transferred to nitrocellulose paper and Western blot was undertaken using an antibody anti-OPN. Two and 12 bands were marked in the seminal plasma (77.2 and 15.6 kDa) and sperm membrane extracts (70.6-26.6 kDa), respectively. However, from 12 marked bands in the sperm membrane extract, only three (46.4, 37.7 and 36.5 kDa) were strongly marked. We conclude that, seminal plasma and sperm membranes from dogs contain different isoforms of OPN; yet, further studies will be necessary to determine their function in this species.
Resumo:
PURPOSE. Amniotic membrane transplantation (AMT) has been used as a graft or as a dressing in ocular surface reconstruction, facilitating epithelization, maintaining normal epithelial phenotype, and reducing inflammation, vascularization, and scarring. The corneal transparency is due, at least in part, to the arrangement in orthogonal lamellae of collagen fibrils, surrounded by proteoglycans (PGs). These PGs regulate fibrilogenesis, the matrix assembly, and ultimately the corneal transparency. The purpose of the present study was to investigate the effects of AMT upon the corneal PGs after severe limbal injury.METHODS. Experiments were performed on the right corneas of 22 New Zealand female albino rabbits, and their left corneas were used as matched controls. These animals were divided into 3 groups: G1 (n = 10): total peritomy and keratolimbectomy, followed by application of 0.5 M NaOH; G2 (n = 10): submitted to the same trauma as G1, and treated by AMT; G3: no trauma, only AMT (n = 2). The right corneas of G2 and G3 were covered by DMSO 4 cryopreserved human amniotic membrane, fixed by interrupted 9-0 mononylon sutures, with its stromal face toward the ocular surface. After 7 or 30 days, the corneas were removed and PGs were extracted.RESULTS. Normal corneas contained approximately 9 mg of PGs per gram of dry tissue. AMT on intact cornea (G3) did not cause any changes in the concentration of PGs. In contrast, injured corneas contained much less PGs, both on the seventh and on the 30th day posttrauma. The PG concentration was even lower in injured corneas treated by AMT. This decrease was due almost exclusively to dermatan sulfate PGs, and the structure of dermatan sulfate was also modified, indicating changes in the biosynthesis patterns.CONCLUSIONS. Although beneficial effects have been observed on clinical observation and concentration of soluble proteins after AMT, the normal PG composition of cornea was not attained, even 30 days postinjury, indicating that the normal ocular surface reconstruction, if possible, is a long-term process. (Eur J Ophthalmol 2010; 20: 290-9)
Resumo:
Aim: To describe the early healing processes around the implants installed after elevation of the sinus mucosa applying the lateral access technique without the use of grafting material.Material and methods: Immediately after the elevation of the maxillary sinus Schneiderian membrane by the lateral approach in eight monkeys, implants were installed without the use of grafting material. The healing of the tissue around the implants was evaluated after 4, 10, 20 and 30 days. Ground sections were prepared and analyzed histologically.Results: After 4 days of healing, the formation of coagulum and provisional matrix was documented within the elevated area. At 10-day interval, sprouts of woven bone were in continuity with the parent bone, and partly in contact with the implant surface at the base of the augmented area. While bone-to-implant contact increased after 20 and 30 days, the area underneath the Schneiderian membrane appeared reduced in volume and condensed toward the apex of the implants. The sinus mucosa was to some extent collapsed onto the implant surface and on the newly formed bone.Conclusions: The void initially occupied by the coagulum after sinus membrane elevation shrank substantially during the observation period. A lack of influence of the Schneiderian membrane in bone formation apical to implants was documented in the early phase of healing.
Resumo:
Objectives: The aim of the present investigation was to histologically analyze the effect of using lyophilized bovine bone (GenOx (R) organic matrix) with (or without) guided tissue regeneration (using a decalcified cortical osseous membrane [GenDerm (R)]) on bone healing in surgically created critical-size defects created in rat tibia.Material and methods: Surgical critical-size bone defects were created in 64 animals that were randomly divided into four groups: group I (control); group II (defect filled with GenOx (R)); group III (defect covered by GenDerm (R)); group IV (defect filled with GenOx (R) and covered by GenDerm (R)). Animals were killed at 30 or 90 days post-surgery. The specimens were embedded in paraffin, serially cut, and stained with hematoxylin and eosin for analysis under light microscopy. The formation of new bone in the cortical area of the defect was histomorphometrically evaluated.Results: All experimental groups demonstrated superior bone healing compared with the control group. However, group IV samples showed evidence of more advanced healing at both 30 and 90 days post-surgery as compared with the other experimental groups.Conclusions: The bovine organic bone graft GenOx (R) associated with GenDerm (R) this produced the best treatment results in the case of critical-size defects in rat tibia.
Resumo:
The aim of this study was to evaluate the periapical healing after the use of membrane, bone graft, and mineral trioxide aggregate (MTA) in apical surgery of dogs' teeth. Apical lesions were induced in 48 roots of 6 dogs after coronal access and pulpal removal. Apical surgery consisted of osteotomy with trephine bur for the standardization of the critical surgical cavities, followed by apicoectomy, curettage, preparation of the root-end cavities with the aid of the ultrasonic device, and retrofilling with MTA. The surgical sites were divided into: group 1-filled with blood; group 2-filled with blood and recovered with membrane; group 3-filled with bone graft; and group 4-filled with bone graft and recovered with membrane. The results showed that the inflammatory infiltrate, the periapical healing process, and the behavior of MTA was the same in all groups, including the mineralization stimulation. It was concluded that the use of membranes and bone graft materials isolated or associated in apical surgery did not alter the periapical healing process after the root-end filling with MTA. (Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2010; 109: 309-314)
Resumo:
Purpose: This study was proposed to analyze histologically the process of repairing bone defects created surgically in the cranial vaults of rabbits. Materials and Methods: Thirty adult male rabbits (Oryctolagus cunilicus) received, under general anesthesia, bilateral parietal osteotomies by means of a 6mm-diameter trephine. The bony defects were divided into 4 groups. In group 1 the defect did not receive any treatment; in group 2 the defect was filled with lyophilized bovine bone (Biograft); in group 3 it was filled with bovine bone and covered with a bone matrix membrane (Bioplate); in group 4 it was covered with a bone matrix membrane. Animals were sacrificed in 3 equal groups at 15, 30, and 60 days. The specimens were subjected to routine laboratory procedures to evaluate the degree of bone repair. Results: After 60 days, new bone formation in group 2 was not satisfactory when compared to that of group 3. Large amounts of new bone formation in maturation were seen in group 3. In the defects covered with a membrane the results were similar to those of group 1 (ie, the cavity was filled with fibrous connective tissue). The implanted bone and membranes were totally resorbed. Discussion and Conclusions: the use of a membrane served as a barrier against the migration of cells from the adjacent tissue and the bone graft/membrane preserved the cavity space, resulting in an enhanced osteogenic effect.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)