926 resultados para particle-size distribution


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neste trabalho, estudou-se o comportamento térmico, a evolução das fases cristalinas com a temperatura e as propriedades físico-mecânicas da Lama Vermelha (LV) procedente da indústria de alumínio do Estado do Maranhão. O estudo foi realizado por Análise Termogravimétrica (TG) e Calorimetria Exploratória Diferencial (DSC), Dilatometria Ótica até 1350 ºC; enquanto a evolução das fases cristalinas com a temperatura foi realizada no intervalo entre 750 a 1150 ºC por Difração de Raios-X (DRX). As propriedades físico-mecânicas como Superfície Específica, Granulometria, Limite Plástico (LP), Limite de Liquidez (LL), Índice de Plasticidade (IP), Tensão de Ruptura a Flexão (TRF), Absorção de Água (AA), Retração Linear Após Queima (RL) e Porosidade Aparente (PA) foram determinadas nas mesmas temperaturas. As seguintes fases cristalinas foram detectadas: hematita, sodalita e anatásio entre 750-850 ºC; e hematita, nefelina e sodalita entre 950-1150 ºC. Os ensaios tecnológicos demonstraram que a LV pode ser aplicada para o processamento de materiais cerâmicos estruturais, pois apresenta pouca reatividade entre 870-950 ºC, com elevada AA, e baixas RL e TRF. Entre 950 e 1350 ºC, a LV sofreu uma retração que variou entre 5-50 %, com fusão total a 1350 ºC, devido à presença de fases minerais do tipo feldespatoides em sua composição.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As argilas vermelhas, utilizadas para cerâmica estrutural e de revestimentos, apresentam variações significativas que se refletem no comportamento apresentado durante o uso, para obtenção de determinado produto. Dentro de cada segmento industrial há requisitos básicos para que uma determinada argila ou mistura tenha capacidade de dar produtos que se encaixem dentro das respectivas Normas. Um dos parâmetros básicos para sua classificação é a absorção de água das peças cerâmicas, que resulta da presença de poros abertos. Esta depende, tanto das matérias primas utilizadas, quanto dos processos aplicados durante a fabricação (moagem, umidificação, conformação e queima, principalmente). Neste trabalho foram estudadas argilas vermelhas provenientes da Formação Corumbataí na região do Pólo Cerâmico de Santa Gertrudes (SP) e da Formação Tatuí na região de Cesário Lange (SP) procurando parâmetros indicativos que permitam uma seleção apropriada de matérias primas para realizar combinações adequadas das mesmas, para revestimentos via seca no primeiro caso, e blocos estruturais no segundo. Foram amostradas argilas com características diferentes, estudando a evolução da sinterização com o aumento da temperatura visando analisar a influencia da distribuição granulométrica e da mineralogia no comportamento apresentado. Com as mesmas amostras foram preparadas misturas calculando a contribuição de cada matéria-prima baseado na absorção de água de cada componente, prefixando a temperatura de queima e o valor de absorção de água. As diferenças entre os valores experimentais e os esperados foram analisadas visando entender as causas das variações. A distribuição de partículas resultante da moagem das matérias primas é influenciada fortemente por processos de intemperismo, sendo que, em termos gerais, as mais intemperizadas...

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Perovskite, single multiferroic bismuth ferrite was prepared by two chemical methods: auto-combustion and soft chemical route. Influence of different fuels and complexing agents and thermal treatment on purity of bismuth ferrite powders and density of bismuth ferrite ceramics were investigated. X-ray diffraction technique (XRD) indicated that optimal temperatures and times for calcination and sintering are 600 degrees C for 2 h and 800 degrees C for 1 h with quenching, respectively. Scanning electron microscopy (SEM) analysis showed that soft route synthesized samples formed softer agglomerates and smaller grains with less secondary phases. Powders and pellets were characterized by Brunauer Emmett Teller (BET) specific surface area analysis, particle size distribution, Fourier transform infrared spectroscopy (FT-IR), dilatometry, Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), dielectric and magnetic measurements. Resistivity and origin of electrical resistance were studied by means of impedance measurements. (C) 2014 Elsevier Ltd and Techna Group S.r.l. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, the physicochemical characteristics of calcium phosphate based bioactive ceramics of different compositions and blends presenting similar micro/nanoporosity and micrometer scale surface texture were characterized and evaluated in an in vivo model. Prior to the animal experiment, the porosity, surface area, particle size distribution, phase quantification, and dissolution of the materials tested were evaluated. The bone regenerative properties of the materials were evaluated using a rabbit calvaria model. After 2, 4, and 8 weeks, the animals were sacrificed and all samples were subjected to histologic observation and histomorphometric analysis. The material characterization showed that all materials tested presented variation in particle size, porosity and composition with different degrees of HA/TCP/lower stoichiometry phase ratios. Histologically, the calvarial defects presented temporal bone filling suggesting that all material groups were biocompatible and osteoconductive. Among the different materials tested, there were significant differences found in the amount of bone formation as a function of time. At 8 weeks, the micro/nanoporous material presenting similar to 55,TCP:45%,HA composition ratio presented higher amounts of new bone regeneration relative to other blends and a decrease in the amount of soft tissue infiltration. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Zidovudine (AZT) is the drug most commonly used in AIDS treatment, isolated or in combination with other antiretroviral agents, but it has certain limitations due to its therapeutic dose-dependent haematological toxicity. In addition, it has low oral bioavailability, since it undergoes pre-systemic metabolism. The nasal route has been used as an alternative route for drug administration, because it can promote its direct absorption to blood circulation, avoiding hepatic metabolism. However, this route presents as a factor limiting the mucociliary clearance mechanisms that remove quickly the formulation of the nasal cavity. To prolong the residence time of formulations, in this direction, has been proposed the development of mucoadhesive systems. Among the various existing systems, the use of chitosan (QS), as mucoadhesive polymer, has been widely exploited in the preparation of nanoparticles (NPs). The objective of this study was to develop and characterize QS’s NPs for intranasal administration of AZT. For both NPs have been developed by ionic crosslinking of QS with sodium tripolyphosphate (TPP). These NPs were characterized by studies of particle size distribution, zeta potential, morphology, mucoadhesion tests, assessing the ability of encapsulation of the drug and permeation profile of AZT. The evaluation of AZT in the NPs was determined by UV-Vis spectroscopy. Mucoadhesion measures were made using a texture analyzer, using a mucin disk and porcine mucous membrane , and permeation assay were conducted using porcine nasal mucous membrane adapted to the Franz cell. These results suggest that the systems in hand have great potential for nasal AZT administration

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work evaluates the spatial distribution of normalised rates of droplet breakage and droplet coalescence in liquidliquid dispersions maintained in agitated tanks at operation conditions normally used to perform suspension polymerisation reactions. Particularly, simulations are performed with multiphase computational fluid dynamics (CFD) models to represent the flow field in liquidliquid styrene suspension polymerisation reactors for the first time. CFD tools are used first to compute the spatial distribution of the turbulent energy dissipation rates (e) inside the reaction vessel; afterwards, normalised rates of droplet breakage and particle coalescence are computed as functions of e. Surprisingly, multiphase simulations showed that the rates of energy dissipation can be very high near the free vortex surfaces, which has been completely neglected in previous works. The obtained results indicate the existence of extremely large energy dissipation gradients inside the vessel, so that particle breakage occurs primarily in very small regions that surround the impeller and the free vortex surface, while particle coalescence takes place in the liquid bulk. As a consequence, particle breakage should be regarded as an independent source term or a boundary phenomenon. Based on the obtained results, it can be very difficult to justify the use of isotropic assumptions to formulate particle population balances in similar systems, even when multiple compartment models are used to describe the fluid dynamic behaviour of the agitated vessel. (C) 2011 Canadian Society for Chemical Engineering

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Despite the efficacy of topical retinoic acid, skin reactions have limited its acceptance by patients. Other retinoids, like Retinyl Palmitate (RP), are considerably less irritating, but they are also less effective. In order to enhance the performance of retinoids, in this work RP has been added to cosmetic formulations such as nanoemulsions, which can provide better penetration of this active substance. Because the vehicle can directly influence the skin penetration and the effectiveness of RP, two skin care products containing 5000 UI RP have been developed and investigated, namely a nanoemulsifying system and a classic gel cream. In vitro penetration tests were conducted by using Franz diffusion cells and placing porcine ear skin and iso-propanol in the receptor compartment. The RP concentration in the skin layers was analyzed by high performance liquid chromatography, and a Zeta-Sizer system was employed for measurement of the the particle size distribution. The penetration tests revealed a large difference between the vehicles in terms of the RP concentrations in each skin layer. The classic gel cream furnished better RP penetration in both the stratum corneum and the epidermis without stratum corneum + dermis, as compared to the self-nanoemulsifying system. The two vehicles displayed the same particle size (between 100 and 200 nm). Better understanding of RP skin delivery using different vehicles has been acquired, and the importance of evaluating the efficacy of nanocosmetics. Results from the present study should also contribute to the assessment of commercial self-nanoemulsifying systems with potential application in the facile production of nanoemulsions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The role of different types of emulsifying saltssodium citrate (TSC), sodium hexametaphosphate (SHMP), sodium tripolyphosphate (STPP) and tetrasodium pyrophosphate (TSPP)on microstructure and rheology of requeijao cremoso processed cheese was determined. The cheeses manufactured with TSC, TSPP, and STPP behaved like concentrated solutions, while the cheese manufactured with SHMP exhibited weak gel behavior and the lowest values for the phase angle (G/G). This means that SHMP cheese had the protein network with the largest amount of molecular interactions, which can be explained by its highest degree of fat emulsification. Rotational viscometry indicated that all the spreadable cheeses behaved like pseudoplastic fluids. The cheeses made with SHMP and TSPP presented low values for the flow behavior index, meaning that viscosity was more dependent on shear rate. Regarding the consistency index, TSPP cheese showed the highest value, which could be attributed to the combined effect of its high pH and homogeneous fat particle size distribution.