989 resultados para particle physics - cosmology connection
Resumo:
This work focuses on the development of a stand-alone gas nanosensor node, powered by solar energy to track concentration of polluted gases such as NO2, N2O, and NH3. Gas sensor networks have been widely developed over recent years, but the rise of nanotechnology is allowing the creation of a new range of gas sensors [1] with higher performance, smaller size and an inexpensive manufacturing process. This work has created a gas nanosensor node prototype to evaluate future field performance of this new generation of sensors. The sensor node has four main parts: (i) solar cells; (ii) control electronics; (iii) gas sensor and sensor board interface [2-4]; and (iv) data transmission. The station is remotely monitored through wired (ethernet cable) or wireless connection (radio transmitter) [5, 6] in order to evaluate, in real time, the performance of the solar cells and sensor node under different weather conditions. The energy source of the node is a module of polycrystalline silicon solar cells with 410cm2 of active surface. The prototype is equipped with a Resistance-To-Period circuit [2-4] to measure the wide range of resistances (KΩ to GΩ) from the sensor in a simple and accurate way. The system shows high performance on (i) managing the energy from the solar panel, (ii) powering the system load and (iii) recharging the battery. The results show that the prototype is suitable to work with any kind of resistive gas nanosensor and provide useful data for future nanosensor networks.
Resumo:
ZnO nanoparticles with highly controllable particle sizes(less than 10 nm) were synthesized using organic capping ligands in Zn(Ac)2 ethanolic solution. The molecular structure of the ligands was found to have significant influence on the particle size. The multi-functional molecule tris(hydroxymethyl)-aminomethane (THMA) favoured smaller particle distributions compared with ligands possessing long hydrocarbon chains that are more frequently employed. The adsorption of capping ligands on ZnnOn crystal nuclei (where n = 4 or 18 molecular clusters of(0001) ZnO surfaces) was modelled by ab initio methods at the density functional theory (DFT) level. For the molecules examined, chemisorption proceeded via the formation of Zn...O, Zn...N, or Zn...S chemical bonds between the ligands and active Zn2+ sites on ZnO surfaces. The DFT results indicated that THMA binds more strongly to the ZnO surface than other ligands, suggesting that this molecule is very effective at stabilizing ZnO nanoparticle surfaces. This study, therefore, provides new insight into the correlation between the molecular structure of capping ligands and the morphology of metal oxide nanostructures formed in their presence.
Resumo:
Alternative fuels and injection technologies are a necessary component of particulate emission reduction strategies for compression ignition engines. Consequently, this study undertakes a physicochemical characterization of diesel particulate matter (DPM) for engines equipped with alternative injection technologies (direct injection and common rail) and alternative fuels (ultra low sulfur diesel, a 20% biodiesel blend, and a synthetic diesel). Particle physical properties were addressed by measuring particle number size distributions, and particle chemical properties were addressed by measuring polycyclic aromatic hydrocarbons (PAHs) and reactive oxygen species (ROS). Particle volatility was determined by passing the polydisperse size distribution through a thermodenuder set to 300 °C. The results from this study, conducted over a four point test cycle, showed that both fuel type and injection technology have an impact on particle emissions, but injection technology was the more important factor. Significant particle number emission (54%–84%) reductions were achieved at half load operation (1% increase–43% decrease at full load) with the common rail injection system; however, the particles had a significantly higher PAH fraction (by a factor of 2 to 4) and ROS concentrations (by a factor of 6 to 16) both expressed on a test-cycle averaged basis. The results of this study have significant implications for the health effects of DPM emissions from both direct injection and common rail engines utilizing various alternative fuels.
Resumo:
A quantitative, quasi-experimental study of the effectiveness of computer-based scientific visualizations for concept learning on the part of Year 11 physics students (n=80) was conducted in six Queensland high school classrooms. Students’ gender and academic ability were also considered as factors in relation to the effectiveness of teaching with visualizations. Learning with visualizations was found to be equally effective as learning without them for all students, with no statistically significant difference in outcomes being observed for the group as a whole or on the academic ability dimension. Male students were found to learn significantly better with visualizations than without, while no such effect was observed for female students. This may give rise to some concern for the equity issues raised by introducing visualizations. Given that other research shows that students enjoy learning with visualizations and that their engagement with learning is enhanced, the finding that the learning outcomes are the same as for teaching without visualizations supports teachers’ use of visualizations.
Resumo:
The renovation of biomass waste in the form of date seed waste into activated carbon and biofuel by fixed bed pyrolysis reactor has been focused in this study to obtain gaseous, liquid, and solid products. The date seed in particle form is pyrolysed in an externally heated fixed bed reactor with nitrogen as the carrier gas. The reactor is heated from 400◦C to 600◦C. A maximum liquid yield of 50wt.% and char of 30wt.% are obtained at a reactor bed temperature of 500◦C with a running time of 120 minutes. The oil is found to possess favorable flash point and reasonable density and viscosity. The higher calorific value is found to be 28.636 MJ/kg which is significantly higher than other biomass derived. Decolonization of 85–97% is recorded for the textile effluent and 75–90% for the tannery effluent, in all cases decreasing with temperature increase. Good adsorption capacity of the prepared activated carbon in case of diluted textile and tannery effluent was found.
Resumo:
The conversion of biomass waste in the form of date seed into pyrolysis oil by fixed bed pyrolysis reactor has been taken into consideration in this study. A fixed bed pyrolysis has been designed and fabricated for obtaining liquid fuel from these date seeds. The major component of the system are fixed bed pyrolysis reactor, liquid condenser and liquid collector. The date seed in particle form is pyrolysed in an externally heated 7.6 cm diameter and 46 cm high fixed bed reactor with nitrogen as the carrier gas. The reactor is heated by means of a biomass source cylindrical heater from 4000C to 6000C. The products are oil, char and gas. The reactor bed temperature, running time and feed particle size are considered as process parameters. The parameters are found to influence the product yield significantly. A maximum liquid yield of 50 wt.% is obtained at a reactor bed temperature of 5000 C for a feed size volume of 0.11- 0.20 cm3 with a running time of 120 minutes. The pyrolysis oil obtained at this optimum process conditions are analyzed for some fuel properties and compared with some other biomass derived pyrolysis oils and also with conventional fuels. The oil is found to possess favorable flash point and reasonable density and viscosity. The higher calorific value is found to be 28.636 MJ/kg which is significantly higher than other biomass derived pyrolysis oils.
Design and construction of fixed bed pyrolysis system and plum seed pyrolysis for bio-oil production
Resumo:
This work investigated the production of bio oil from plum seed (Zyziphus jujuba) by fixed bed pyrolysis technology. A fixed bed pyrolysis system has been designed and fabricated for production of bio oil. The major components of the system are: fixed bed reactor, liquid condenser and liquid collector. Nitrogen gas was used to maintain the inert atmosphere in the reactor where the pyrolysis reaction takes place. The feedstock considered in this study is plum seed as it is available waste material in Bangladesh. The reactor is heated by means of a cylindrical biomass external heater. Rice husk was used as the energy source. The products are oil, char and gas. The parameters varied are reactor bed temperature, running time and feed particle size. The parameters are found to influence the product yields significantly. The maximum liquid yield of 39 wt% at 5200C for a feed particle size of 2.36-4.75 mm and a gas flow rate of 8 liter/min with a running time of 120 minute. The pyrolysis oil obtained at these optimum process conditions are analyzed for some of their properties as an alternative fuel. The density of the liquid was closer with diesel. The viscosity of the plum seed liquid was lower than that of the conventional fuels. The calorific value of the pyrolysis oil is one half of the diesel fuel.
Resumo:
The conversion of tamarind seeds into pyrolytic oil by fixed bed fire-tube heating reactor has been taken into consideration in this study. The major components of the system were fixed bed fire-tube heating reactor, liquid condenser and collectors. The raw and crushed tamarind seed in particle form was pyrolized in an electrically heated 10 cm diameter and 27 cm high fixed bed reactor. The products are oil, char and gases. The parameters varied were reactor bed temperature, running time, gas flow rate and feed particle size. The parameters were found to influence the product yields significantly. The maximum liquid yield was 45 wt% at 4000C for a feed size of 1.07cm3 at a gas flow rate of 6 liter/min with a running time of 30 minute. The pyrolysis oil was obtained at these optimum process conditions were analyzed for physical and chemical properties to be used as an alternative fuel.
Resumo:
A fixed bed pyrolysis has been designed and fabricated for obtaining liquid fuel from Mahogany seeds. The major components of the system are fixed bed pyrolysis reactor, liquid condenser and liquid collectors. The Mahogany seed in particle form is pyrolysed in an externally heated 10 cm diameter and 36 cm high fixed bed reactor with nitrogen as the carrier gas. The reactor is heated by means of a biomass source cylindrical heater from 450oC to 600oC. The products are oil, char and gas. The reactor bed temperature, running time and feed particle size are considered as process parameters. A maximum liquid yield of 54wt% of biomass feed is obtained with particle size of 1.18 mm at a reactor bed temperature of 5500C with a running time of 90 minutes. The oil is found to possess favorable flash point and reasonable density and viscosity. The higher calorific value is found to be 39.9 MJ/kg which is higher than other biomass derived pyrolysis oils.
Resumo:
Among various thermo-chemical conversion processes, pyrolysis is considered as an emerging technology for liquid oil production. The conversion of biomass waste in the form of plum seed into pyrolysis oil by fixed bed pyrolysis reactor has been taken into consideration in this study. A fixed bed pyrolysis has been designed and fabricated for obtaining liquid fuel from this plum seeds. The major component of the system are fixed bed pyrolysis reactor, liquid condenser and liquid collectors. The plum seed in particle form is pyrolysed in an externally heated 7.6 cm diameter and 46 cm high fixed bed reactor with nitrogen as the carrier gas. The reactor is heated by means of a biomass source cylindrical heater from 4000C to 6000C. The products are oil, char and gas. The reactor bed temperature, running time and feed particle size are considered as process parameters. The parameters are found to influence the product yield significantly. A maximum liquid yield of 39 wt% of biomass feed is obtained with particle size of 2.36-4.75 mm at a reactor bed temperature of 520oC with a running time of 120 minutes. The pyrolysis oil obtained at this optimum process conditions are analyzed for some fuel properties and compared with some other biomass derived pyrolysis oils and conventional fuels. The oil is found to possess favorable flash point and reasonable density and viscosity. The higher calorific value is found to be 22.39 MJ/kg which is higher than other biomass derived pyrolysis oils.