931 resultados para oxy-fuel combustion


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work investigated the operating conditions of a 'scramjet' through numerical simulation considering two-dimensional steady flow. Using a commercial software, FLUENT, cases of inviscid flow with and without fuel injection, turbulent flow without fuel injection, turbulent flow with fuel injection and without burning, and finally turbulent flow with fuel injection and burning are simulated

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this work is to make a qualitatively and ecologically evaluation of a compact cogeneration system that operates with synthesis gas obtained from a gasifier. Using the Eucalyptus Biomass as fuel, that passes through a wood gasifier (Drowndraft type) and supply the internal combustion engine. The compact cogeneration system is composed of two heat exchangers, an energy generator connected to an internal combustion engine and an absorption refrigeration system. The complete system is installed in the laboratory from the Energy Department at the University of Guaratinguetá. By the analysis related to the First and Second Thermodynamic Laws applied in this system, was possible to identify the mass flows in each point, energetic efficiency, irreversibility and exergetic efficiency. The components that have the biggest irreversibilities are the gasifier, followed by the internal combustion engine, which should be focused in future improvements. The system efficiency in energetic basis is 51,84% and in exergetic basis is 22,78%. Using the ecologic efficiency methodology was possible to identify the emissions rates, the pollution indicator associated to the combustion of the synthesis gas in the internal combustion engine. The ecologic efficiency considering the energectic analysis is 91,73%, while considering the exergetic analysis, 83,65%. It is concluded that the use of the synthesis gas in a compact cogeneration system is viable from the technical and ecological point of view, making possible to generate energy for isolated communities and promoting the decentralized electricity generation

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is clear today the ever-accelerating search for new fuels that will eventually replace those that will survive in our society, which are fossil fuels. For this reason, a fuel used since the dawn of humanity and much studied since then, considered the generator of clean, renewable energy, can earn more and more space in the power generation sector, which is biomass. We performed two experiments with two different types of biomass, one from the Amazon rainforest and other pine and eucalyptus as waste from the sawmill UNESP Itapeva. In the first experiment, conducted at the Laboratory of Combustion and Propulsion INPE Cachoeira Paulista were conducted three tests in a chimney with a fan creating forced ventilation, where the biomass was burned and deposited on a support beneath the hood. In the second experiment was conducted to analyze the emission of particulate matter using biomass (waste) from the sawmill on the campus of UNESP experimental Itapeva the burning of it in a burner for heating water for a wood oven. In these experiments we used a particle called DATARAM4 sampler that is capable of sampling both outdoors and inside of pipelines, which is the focus of this work. With this equipment it was possible to measure the concentration of particulate matter in all the firings as above, and compare them to levels acceptable in the current law, always trying to analyze the so-called fine particles, which are those with diameters less than 2.5 μm. Using data obtained from the equipment was also possible to evaluate the diametral distribution of particulate matter in question, and verify which phases of the flares in the concentration and the diameters of the particles are the most critical. In this work we concluded that in all firings conducted concentrations of particulate matter were higher than that allowed by the law, and the diameters were found that are more harmful to human health

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nowadays, the automotive industry is working to optimize the design of engines, in order to reduce the fuel consumption with acceptable efficiency ratio. This undergraduate thesis is aimed at perform a kinematic/dynamic analysis of a slider-crank mechanism that is part of a four stroke internal combustion engine, the same engine that was used in the analysis described by Montazersadhd and Fatemi (2007). Two algorithms were developed based on Kane’s method to calculate velocities and accelerations of the mechanism bodies, and provide the acting forces at connecting rod joints. A SimMechanics model was developed to simulate the engine, and monitoring the same parameters that were calculated with the algorithms. The results obtained with both approaches were satisfactory and showed good agreement with the values provided by Montazersadhd and Fatemi (2007). The obtained results showed that the axial component of the rod joint efforts was caused by the pressure exerted on the piston head,whereas the radial component was related with the action of inertia loads. Besides, this thesis presents a connecting rod assembly mesh that is going to be used for static and fatigue finite element analysis in the future

Relevância:

20.00% 20.00%

Publicador:

Resumo:

CeO2-based materials doped with rare earth (TR +3) can be used as alternative to traditional NiO-YSZ anodes in solid oxide fuel cells as they have higher ionic conductivity and lower ohmic losses compared to YSZ. Moreover, they allow fuel cell operation at lower temperatures (500-800°C). In the anode composition, the concentration of NiO acting as catalyst in YSZ provides high electrical conductivity and high electrochemical activity of reactions, promoting internal reform in the cell. In this work, NiO - Ce1-xEuxO2-δ compounds (x = 0.1, 0.2 and 0.3) have been synthesized by microwave-assisted hydrothermal method. The materials were characterized by TG, XRD, TPR and SEM-FEG techniques. The refinement of data obtained by X-ray diffraction showed the presence of ceria doped with europium crystallized in a cubic phase with fluorite structure, in addition to the presence of NiO. The microwave-assisted hydrothermal method showed significant reduction in the average particle size and good mass control of phase compositions compared to other chemical synthesis techniques.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports on the effect of the substitution of Fe3+ for Cr3+ ions in the spinel lattice of the powders was investigated. Nickel ferrite powders with a NiFe2-xCrxO4 nominal composition (x = 0.0; 0.5; 1.0 and 1.5 mol of the chromium) were synthesized by combustion reaction using urea as fuel. The powders resulting were characterized by XRD, nitrogen adsorption by BET, SEM and Mössbauer spectroscopy (57Fe Mössbauer spectra). The results show that the substitution of the Fe3+ for Cr3+ions increased the crystalline degree of the phase, reduced the superficial area and consequently increased the particle size. The Mössbauer spectra of the samples also confirm the distribution of the particles size by the magnetic properties. Analyze of the spectra Mössbauer gives an estimate of the superparamagnetic and ferromagnetic particles behavior in each sample for several chromium concentrations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, an electrode chemically modified with polypyrrole (PCME) was employed for determination of sulfate in ethanol fuel using a FIA system. The PCME was prepared by polymerization of pyrrole at a glassy carbon electrode by means of cyclic voltammetry technique. An analytical curve from 1.0 x 10−5 to 8.0 x 10−5 mol L−1 was obtained in flow injection system based on the PCME. An amperometric sensibility of 2.3 x 10−3 A mol−1 L and a detection limit of 2.5 x 10−6 mol L−1 were achieved. The proposed method was employed for determination of sulfate ions in commercial samples of ethanol fuel. The results were in good agreement with those obtained by the ionic chromatographic method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The hydrogen gas is regarded as clean and renewable energy source, since it generates only water during combustion when used as fuel. It shows 2.75 times more energy content than any hydrocarbon and it can be converted into electrical, mechanical energy or heat. Inoculum sources have been successfully tested for hydrogen biological production in temperate climate countries as sludge treatment plants sewage, sludge treatment plant wastewater, landfill sample, among others. However, hydrogen biologic production with inoculum from environmental samples such as sediment reservoirs, especially in tropical countries like Brazil, is rarely investigated. Reservoirs and fresh water lake sediment may contain conditions for the survival of a wide variety of microorganisms which use different carbon sources mainly glucose and xylose, in the fermentation. Glucose is an easily biodegradable, present in most of the industrial effluents and can be obtained abundantly from agricultural wastes. A wide variety of wastewater resulting from agriculture, industry and pulp and paper processed from wood may contain xylose in its constitution. Such effluent contains glucose and xylose concentrations of about 2 g/L. In this sense, this work verified hydrogen biological production in anaerobic batch reactor (1L), at 37 ° C, initial pH 5.5, headspace with N2 (100%), Del Nery medium, vitamins and peptone (1 g/L), fed separately with glucose (2g/L) and xylose (2 g/L). The inoculum was taken from environmental sample (sediment reservoir Itupararanga - Ibiúna - SP-Brazil). It was previously purified in serial dilutions at H2 generation (10-5, 10-7, 10-10), and heat treated (90º C - 10 min) later to inhibited the H2 consumers. The maximum H2 generations obtained in both tests were observed at 552 h, as described below. At the reactors fed with glucose and xylose were observed, respectively, 9.1 and 8.6 mmol H2/L, biomass growth (0.2 and 0.2 nm); consumption of sugar concentrations 53.6% (1.1 glucose g/L) and 90.5% (1.8 xylose g/L); acetic acid generation (124.7 mg/L and 82.7 mg/L), butyric acid (134.0 mg/L and 230.4 mg/L) and there wasn’t methane generation in the reactors. Microscopic analysis of biomass in anaerobic reactors showed the predominance of Gram positive rods and rods with endospores, whose morphology is characteristic of H2-generating bacteria, in both tests. These species were selected from the natural environment. In DGGE analysis performed difference were observed between populations from inoculum and in tests. This analysis confirmed that some species of bacteria were selected which remained under the conditions imposed on the experiment. The efficiency of the pre-treatment of inoculum and the imposition of pH 5.5 inhibited methane-producing microorganisms and the consumers of H2. Therefore, the experimental conditions imposed allowed the attainment of bacterial consortium of producer H2 taken from an environmental sample with concentration of xylose and glucose similar to the ones of the industrial effluents.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In Brazil, due to its availability, sugar cane bagasse has a high potential for power generation. The knowledge of ignition behavior, as well as the knowledge of the chemical kinetics, in of fuels combustion process is important features in boilers projects and in the stability of the combustion process control. The aim of this study is to investigate the thermal behavior of sugar cane bagasse, coal and their blends. The methodology proposed by Tognotti et al. (1985) was applied to determine the ignition temperature for all samples. Ignition temperatures were 256oC for neat bagasse and 427oC for neat coal, and 275oC for both blends (50-50% and 25-75%). The ModelFree Kinetics was applied to determine the apparent activation energy (Eα) of the thermal decomposition of sugar cane bagasse. For the two major events of mass loss of bagasse which correspond to the thermal decomposition of organic matter (mainly hemicellulose, cellulose and lignin), average values of Eα were obtained for both combustion and pyrolysis processes. In synthetic air atmosphere, the Eα were 170.8±26.3 kJ⋅mol-1 and 277.8±58.6 kJ⋅mol-1, while in nitrogen atmosphere, the Eα were 185.0 ± 11.4 kJ⋅mol-1 and 82.1±44.4 kJ⋅mol-1. The results obtained can be explained by synergistic effects when both bagasse and coal were blended, changing the fuel reactivity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Landscape fires show large variability in the amount of biomass or fuel consumed per unit area burned. Fuel consumption (FC) depends on the biomass available to burn and the fraction of the biomass that is actually combusted, and can be combined with estimates of area burned to assess emissions. While burned area can be detected from space and estimates are becoming more reliable due to improved algorithms and sensors, FC is usually modeled or taken selectively from the literature. We compiled the peerreviewed literature on FC for various biomes and fuel categories to understand FC and its variability better, and to provide a database that can be used to constrain biogeochemical models with fire modules. We compiled in total 77 studies covering 11 biomes including savanna (15 studies, average FC of 4.6 t DM (dry matter) ha 1 with a standard deviation of 2.2), tropical forest (n = 19, FC = 126 +/- 77), temperate forest (n = 12, FC = 58 +/- 72), boreal forest (n = 16, FC = 35 +/- 24), pasture (n = 4, FC = 28 +/- 9.3), shifting cultivation (n = 2, FC = 23, with a range of 4.0-43), crop residue (n = 4, FC = 6.5 +/- 9.0), chaparral (n = 3, FC = 27 +/- 19), tropical peatland (n = 4, FC = 314 +/- 196), boreal peatland (n = 2, FC = 42 [42-43]), and tundra (n = 1, FC = 40). Within biomes the regional variability in the number of measurements was sometimes large, with e. g. only three measurement locations in boreal Russia and 35 sites in North America. Substantial regional differences in FC were found within the defined biomes: for example, FC of temperate pine forests in the USA was 37% lower than Australian forests dominated by eucalypt trees. Besides showing the differences between biomes, FC estimates were also grouped into different fuel classes. Our results highlight the large variability in FC, not only between biomes but also within biomes and fuel classes. This implies that substantial uncertainties are associated with using biome-averaged values to represent FC for whole biomes. Comparing the compiled FC values with co-located Global Fire Emissions Database version 3 (GFED3) FC indicates that modeling studies that aim to represent variability in FC also within biomes, still require improvements as they have difficulty in representing the dynamics governing FC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Work on Pt-Sn-C catalysts for ethanol oxidation showed that a thermal treatment at moderate temperatures leads to a significant increase in activity. The best activity was observed for Pt3Sn1 thermally treated at 200 degrees C and ascribed to a Pt3Sn1 phase plus a cleaning effect. However, electronic effects may be very important and these were not evaluated in the Pt3Sn1 phase. Therefore, in this work we investigated the effect of the degree of alloy on the electronic structure of Pt3Sn1 electrocatalysts by performing electrochemical in situ X-ray absorption (XAS) experiments in the Pt L-III XANES region. Overall, the results show that although the occupancy of the Pt 5d band depends on the degree of alloy other factors, such as the presence of tin oxides/hydroxides in the materials, have to be considered to understand the performance of the DEFC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)