1000 resultados para organic colorants


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of Zn(II) and Cd(II) metal-organic frameworks, namely, [Zn(DFDA)] (1), [Cd(DFDA)(C2H5OH)] (2), [Zn-2(DFDA)(2)(L-1)(2)](2) center dot 3H(2)O (3), [Cd-2(DFDA)(2)(L-1)(2)] (4), [Zn(DFDA)(L-2)] (5), [Cd(DFDA)(L-2)(DMF)] (6), and [Zn(DFDA)(L-3)] (7) (where DFDA = 9,9-dipropylfluorene-2,7-dicarboxylate anion, L-1 = 1,4-bis(imidazol-1-ylmethyl)benzene, L-2 = 1,1'-(1,4-butanediyl) bis(imidazole), L-3 = 2,2'-bipyridine) have been synthesized under hydrothermal conditions and structurally characterized. Compound 1 exhibits a three-dimensional (3D framework containing one-dimensional (1D) Zn(II)-O clusters, with (4(8).6(7)) topology. Compound 2 contains hydrophobic channels built from infinite 1D Cd(II)-O clusters, with (4(8).5(4).6(3)) topology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel metal-organic framework with unprecedented interweaving of coaxial single-helical and equal double-helical chains of opposite chirality, which features a super-connective helix simultaneously tangling with eight helices, was reported.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tetraoctyl-substituted vanadyl phthalocyanine (OVPc4C8) as a new NIR-absorbing discotic liquid crystalline material can form highly ordered thin films with edge-on alignment of the molecules and molecular packing mode identical to that in the phase II of OVPc for solution processed OTFTs with mobility up to 0.017 cm(2) V-1 s(-1).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Water-soluble tetra-p-sulfonatocalix[4]arene, acting as a four-connected node, bridges the rare earth cations into a 3D porous MOF in which 1D smaller circular hydrophilic channels and larger quadratic ones are lined up along the c axis and interconnected to each other by the calixarene cavities and other interstices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three new metal-organic coordination polymers, [Cu(2,3-pydc)(bpp)]center dot 2.5H(2)O (1), [Zn(2,3-pydc)(bpp)]center dot 2.5H(2)O (2) and [Cd(2,3-pydc)(bpp)(H2O)]center dot 3H(2)O (3) (2,3-pydcH(2) = pyridine-2,3-dicarboxylic acid, bpp 1,3-bis(4-pyridyl)propane), have been synthesized at room temvperature. All complexes have metal ions serving as 4-connected nodes but represent two quite different structural motifs. Complexes 1 and 2 are isomorphous, both of which feature 2D -> 3D parallel interpenetration. Each two-dimensional (2D) layer with (4, 4) topology is interlocked by two nearest neighbours, one above and one below, thus leading to an unusual 3D motif. Complex 3 has a non-interpenetrating 3D CdSO4 framework with cavities occupied by uncoordinated water molecules.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, organic-inorganic hybrid material, which is composed of silica and the grafting copolymer of poly (vinyl alcohol) and 4-vinylpyridine (PVA-g-P(4-VP)), was employed to immobilize Trichosporon cutaneum strain 2.570 cells. Cells entrapped into the hybrid material were found to keep a long-term viability. The mechanism of such a long-term viability was investigated by using confocal laser scanning microscopy (CLSM). Our studies revealed that arthroconidia produced in the extracellular material might play an important role in keeping the long-term viability of the immobilized microorganism. After the arthroconidia were activated, an electrochemical biochemical oxygen demand (BOD) sensor based on cell/hybrid material-modified supporting membrane was constructed for verifying the proposed mechanism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate an approach for realizing colour-controllable light emission from top-emitting organic light-emitting diodes (TEOLEDs) by utilizing exterior multilayer films overlaid on them. The emissive colour varies from blue to red for the TEOLED with green tris(8-quinolinolato) aluminium as the emissive layer by tuning the exterior multilayer films. The theoretical simulation of the electroluminescence for the colour tunable TEOLEDs is demonstrated and accords well with experimental results. The advantage of this approach is that the optical and electrical characteristics of the TEOLED can be controlled individually and hence provides the feasibility to realize a full-colour display by using white TEOLEDs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Efficient inverted top-emitting organic light-emitting diodes with aluminum (Al) as both the cathode and semitransparent anode are investigated. It is found that introduction of the ultrathin molybdenum trioxide (MoO3)/fullerene (C-60) bilayer structure between the low work function Al top anode and the hole-transporting layer dramatically enhances the device performance as compared to the devices with sole MoO3 or C-60 buffer layer. The ultraviolet photoemission spectroscopy and x-ray photoelectron spectroscopy indicate that the hole injection barrier between Al anode and hole-transporting layer is effectively reduced via strong dipole effect at Al/MoO3/C-60 interfaces with its direction pointing from Al to C-60.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By incorporating two phosphorescent dyes, namely, iridium(III)[bis(4,6-difluorophenyl)-pyridinato-N,C-2']picolinate (Flrpic) for blue emission and bis(2-(9,9-diethyl-9H-fluoren-2-yl)-1-phenyl-1 H-benzoimidazol-N,C-3) iridium(acetylacetonate) ((fbi)(2)Ir(acac)) for orange emission, into a single-energy well-like emissive layer, an extremely high-efficiency white organic light-emitting diode (WOLED) with excellent color stability is demonstrated. This device can achieve a peak forward-viewing power efficiency of 42.5 lm W-1, corresponding to an external quantum efficiency (EQE) of 19.3% and a current efficiency of 52.8 cd A(-1). Systematic studies of the dopants, host and dopant-doped host films in terms of photophysical properties (including absorption, photoluminescence, and excitation spectra), transient photoluminescence, current density-voltage characteristics, and temperature-dependent electroluminescence spectra are subsequently performed, from which it is concluded that the emission natures of Flrpic and (fbi)(2)Ir(acac) are, respectively, host-guest energy transfer and a direct exciton formation process. These two parallel pathways serve to channel the overall excitons to both dopants, greatly reducing unfavorable energy losses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By codoping blue and orange phosphorescent dyes into a single host material, a highly efficient white organic light-emitting diode (WOLED) with Commission Internationale de L'Eclairage coordinates of (0.38, 0.43) at 12 V is demonstrated. Remarkably, this WOLED achieves reduced current efficiency roll-off, which slightly decreases from its maximum value of 37.3-31.0 cd/A at 1000 cd/m(2). The device operational mechanism is subsequently investigated in order to unveil the origin of the high performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An alternative way to optimize the emission characteristics of a microcavity top-emitting organic light-emitting diode (TOLED) based on a simple device structure is demonstrated via combining a comprehensive theoretical analysis in the microcavity effects with the experimental modification in the carrier injection of both electrodes. It can be seen that the resulting TOLED exhibits much higher efficiencies and a more saturated color than those of the corresponding conventional bottom-emitting device, as well as hardly detectable color shift with viewing angles. Such a strategy may be more feasible in practical application for active-matrix organic light-emitting diode displays.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Highly efficient fluorescent white organic light-emitting diodes (WOLEDs) have been fabricated by using three red, green and blue, separately monochromatic emission layers. The red and blue emissive layers are based on 4-(dicyanomethylene)-2-tert-butyl-6-(1,1,7,7-tetramethyljulolidin-4-yl-vinyl)-4H-pyran (DCJTB) doped N,N'-di(naphthalene-1-yl)-N,N'-diphenyl-benzidine (NPB) and p-bis(p-N,N-diphenyl-amino-styryl) benzene (DSA-ph) doped 2-methyl-9,10-di(2-naphthyl) anthracene (MADN), respectively; and the green emissive layer is based on tris(8-hydroxyquionline)aluminum(Alq(3)) doped with 10-(2-benzothiazolyl)-2,3,6,7-tetrahydro-1,1,7,7-tetramethyl- 1H,5H,1[H-(1)-benzopyropyrano(6,7-8-i,j)quinolizin-1]-one (C545T), which is sandwiched between the red and the blue emissive layers. It can be seen that the devices show stable white emission with Commission International de L'Eclairage coordinates of (0.41, 0.41) and color rendering index (CRI) of 84 in a wide range of bias voltages.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It has been found that cesium hydroxide (CsOH) doped tris(8-hydroxyquinoline) aluminum (Alq(3)) as an interfacial modification layer on indium-tin-oxide (ITO) is an effective cathode structure in inverted bottom-emission organic light-emitting diodes (IBOLEDs). The efficiency and high temperature stability of IBOLEDs with CsOH:Alq(3) interfacial layer are greatly improved with respect to the IBOLEDs with the case of Cs2CO3:Alq(3). Herein, we have studied the origin of the improvement in efficiency and high temperature stability via the modification role of CsOH:Alq(3) interfacial layer on ITO cathode in IBOLEDs by various characterization methods, including atomic force microscopy (AFM), ultraviolet photoemission spectroscopy (UPS), X-ray photoemission spectroscopy (XPS) and capacitance versus voltage (C-V). The results clearly demonstrate that the CsOH:Alq(3) interfacial modification layer on ITO cathode not only enhances the stability of the cathode interface and electron-transporting layer above it. which are in favor of the improvement in device stability, but also reduces the electron injection barrier and increases the carrier density for current conduction, leading to higher efficiency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By introducing an effective electron injection layer (EIL) material, i.e., lead monoxide (PbO), combined with the optical design in device structure, a high efficiency inverted top-emitting organic light-emitting diode (ITOLED) with saturated and quite stable colors for different viewing angles is demonstrated. The green ITOLED based on 10-(2-benzothiazolyl)-1, 1, 7, 7-tetramethyl-2, 3, 6, 7-tetrahydro-1H, 5H, 11H-[1] benzopyrano [6, 7, 8-ij] quinolizin-11-one exhibits a maximum current efficiency of 33.8 cd/A and a maximum power efficiency of 16.6 lm/W, accompanied by a nearly Lambertian distribution as well as hardly detectable color variation in the 140 forward viewing cone. A detailed analysis on the role mechanism of PbO in electron injection demonstrates that the insertion of the PbO EIL significantly reduces operational voltage, thus greatly improving the device efficiency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By introducing tungsten oxide (WO3) doped N,N-'-di(naphthalen-1-yl)-N,N-'-diphenyl-benzidine (NPB) hole injection layer, the great improvement in device efficiency and the organic film morphology stability at high temperature were realized for organic light-emitting diodes (OLEDs). The detailed investigations on the improvement mechanism by optical, electric, and film morphology properties were presented. The experimental results clearly demonstrated that using WO3 doped NPB as the hole injection layer in OLEDs not only reduced the hole injection barrier and enhanced the transport property, leading to low operational voltage and high efficiency, but also improved organic film morphology stability, which should be related to the device stability. It could be seen that due to the utilization of WO3 doped NPB hole injection layer in NPB/tris (8-quinolinolato) aluminum (Alq(3))-based device, the maximum efficiency reached 6.1 cd A(-1) and 4.8 lm W-1, which were much higher than 4.5 cd A(-1) and 1.1 lm W-1 of NPB/Alq(3) device without hole injection layer. The device with WO3 doped NPB hole injection layer yet gave high efficiency of 6.1 cd A(-1) (2.9 lm W-1) even though the device was fabricated at substrate temperature of 80 degrees C.