958 resultados para opioid peptided esters
Resumo:
It is an exploratory and descriptive study made by a quantitative approach, developed among February and May 2010, aiming to assess the pain of patients underwent abdominal surgeries in a University Hospital, in Natal/RN; to identify the local and intensity of the pain based on Numerical Estimative Scale; to analyze the pain related to the sensorial-discriminative, motivational-affective and cognitive-assessment dimensions, using the McGill Questionnaire pain; to establish a relation between the pain process and age, gender, religion, and king of surgery; to identify the medicines efficiency used to control postoperative pain. The sample was composed by 253 patients underwent abdominal surgeries. The results showed a total of 63.63% females between 38 and 47 years of age (21.34%); illiterates (21.73%); married (64.03%), living in Natal and surroundings (67.97%) and Catholics (74.30%). In their first assessment, 84.19% showed postoperative pain; the pain was considered light in 18.97% of them, moderate in 21.74% and severe in 43.48%. The mean number of descriptors chosen through the McGill Questionnaire Pain was 10.78 (DP= 6.09) and pain rating 23.65 (DP= 15.93). The descriptors selected with higher frequency were: sickening pain (69.01%), tired (65.25%), thin (62.44%), bored (58.69%), ardor (46.48%), pointed (38.50%) and colic (35.21%). In their second assessment, 57.71% of patients didn t relate any postoperative pain and 42.29% were still complaining about the pain. After taking analgesic medication, just 41.90% of patients who had complete pain relief. The Pharmacological groups most used were: simple analgesic (37.86%), weak opioids (32.98%), AINES (19.85%) and strong opioid (9.31%). It was not found a significant postoperative pain variation related to the sexes, religion and kind of surgery. It was concluded there were a high level in the number of patients with postoperative pain, mainly in a severe scale. Less than half of patients had the pain relief. Then, it was observed there was not coherence between the pain intensity and the analgesic it was used. To solve or relieve this kind of problems is necessary a permanent education to the health professionals who works in this area
Resumo:
Quasi-experimental study, with prospective data, comparative with quantitative approach, performed in a reference hospital, aiming to identify the effectiveness of the Numerical Rating Scale (NRS) and McGill Pain Questionnaire, used simultaneously, to evaluate a group of patients with oncologic pain (Experimental Group); to identify the effectiveness of the Numerical Rating Scale (NRS) to evaluate a group of patients with oncologic pain (Control Group); to identify the resolution of pain according to prescribed medication, considering the result of the rating scales, and to compare it between the two groups of patients in the study. The population consisted of 100 patients, with both the experimental and control groups being composed of 50 people, with data collected from February to April 2010. The results show that in the experimental group, 32% of the patients were aged 60 to 69, 80% were female; 30% had a primary tumor in the breast, 58% had metastasis, and on 70% the disease was localized. In the first pain evaluation, 26% identified it as light; 46%, moderate; and 28%, severe; with an average of 5.50. In the second pain evaluation, 2% reported no pain; 70%, light; 26%, moderate. and 2%, severe, with an average of 3.30. On those with moderate pain, 60% used non-opioid medicine, 25% under severe pain were medicated with non-opioids and 41.67% with weak opioids. Regarding the Pain Management Index (PMI), 44.0% were rated as "-1". In the control group, 28% were aged 40 to 49, and 54% were male; 20% had primary tumor in the breast and genital-urinary system, consecutively; 56% presented metastasis; on 64% the disease was localized. In the first pain evaluation, 14% considered it light; 42%, moderate; and 44%, severe; with an average of 6.26. In the second pain evaluation, 18% did not signal pain; on 38% pain was light; 40%, moderate; and 4%, severe; with an average of 3.0. Regarding medicine therapy, 71.43% with moderate pain used non-opioids, 22.73% with severe pain used non-opioids and 27.27% weak opioids. Considering PMI, 42% were rated "-1"; and 42%, rated "0". We conclude that, despite the importance of pain as the 5th vital sign, it is still under-identified and under-treated by professionals. Nevertheless, studied oncologic patients had a tendency to report pain more easily when evaluated with the NRS instrument than with the combined use of NRS and MPQ. We believe, however, that the combination of these two instruments represents a more effective evaluation of pain, as it allows comprehension of its quantitative and qualitative aspects. We recommend, however, the replication of this study on a larger population, for a longer span of time, and consequently generating more evaluations, so this can confirm or deny the hypothesis that NRS and MPQ can, together, better evaluate pain on the oncologic patient
Resumo:
The production of biodiesel has become an important and attractive process for the production of alternative fuels. This work presents a study of the biodiesel production from coconut oil (Cocos nucifera L.), by two routes: direct transesterification using NaOH as catalyst and esterification (with H2SO4) followed by basic transesterification. The reactor was built in pirex with 1L of capacity and was equipped with a jacket coupled with a thermostatic bath to temperature control, a mecanical stirring is also present in the reactor. The analysis of oil composition was carried out by gas chromatography and esters compounds were identified. The parameters of molar ratio oil/alcohol, reaction time and temperature were studied and their influence on the conversion products was evaluated using experimental planning (23). The molar ratio was the most significant variable by the statistical planning analysis. Conversions up to 85.3% where achived in the esterification/transesterification, with molar ratio 1:6 at 60ºC and 90 minutes of reaction. For the direct transesterification, route conversions up 87.4% eas obtained using 1:6.5 molar ratio at 80ºC and 60 minutes of reaction. The Coconut oil was characterized by their physic chemical properties and key constituents of the oil. The lauric acid was the main constituint and the oil showed high acidity. The biodiesel produced was characterized by its main physicochemical properties, indicating satisfactory results when compared to standard values of National Petroleum Agency. The work was supplemented with a preliminary assessment of the reaction kinetic
Resumo:
The development of new fuels is an important field of scientific and technological activities, since much of the energy consumed in the world is obtained from oil, coal and natural gas, and these sources are limited and not renewable. Recently it has assessed the employment of microemulsions as an alternative for obtaining fuel isotropic between phases originally not miscible. Among many advantages, emphasizes the application of substances that provide the reduction of levels of emissions compared to fossil fuels. Thus, this work was a study of various microemulsified systems, aiming to check the performance of the winsor regions front of the use of surfactants: RENEX 18 → 150, UNITOL L-60 → L-100 and AMIDA 60, together with structure of esters from soybean and castor bean oils. From the results it were chosen four systems to physico-chemical analyzes: System I RENEX 60, Soil bean oil, methylic ester (EMOS) and water; System II RENEX 60/AMIDA 60, EMOS and water; System III RENEX 70, mamona oil methylic ester (EMOM) and water and System IV RENEX 95, EMOM and water. The tests of physico-chemical characterization and study of temperature increase were done with nine points with different compositions in a way to include the interest area (microemulsion W/O). After this study, was conducted a modeling to predict the viscosity, the property is more varied as function of compositions systems changes. The best results were the systems II and IV with a temperature stability above 60°C. The system I had its physico-chemical characterization very similar to a fossil fuel. The system II was the best one due to its corrosivity be stable. In the modeling the four systems had shown good, with an error that varied between 5 and 18%, showing to be possible the viscosity prediction from the composition of the system. The effects the microemulsion and the engine´s performance with the microemulsion were also avaliated. The tests were performed in a cycle-diesel engine. The potency and consumption were analysed. Results show a slight increase the rendiment fuel compared with the conventional as well as a decrease in specific consumption
Resumo:
The developments in formulating drilling fluids to apply in petroleum fields are based on new technologies and environmental challenges, where the technical performance of a developed drilling fluid is used to produce a minimum environmental impact, showing great economy in costs. It is well known that the potential use of oil-based drilling fluids is limited because these fluids when discharged in the sea do not disperse as much as water-based ones and may form waterproof films in the seabed, having a profound effect on plants and animals living in this environment. The current works have been made in investigating fluids called pseudofluids, which are synthetic ester-based, n-paraffin-based and other fluids formed from inverse emulsion. In this research the principal parameters involved in inverse emulsion process were studied, in laboratory scale, using esters as main component. Others commercial drilling fluids were used as comparative samples, as well as samples from laboratory and field where these drilling fluids are being applied. Concentrations of emulsifier and organophilic clay, which are viscosity donor, were varied to verify the influence of these parameters, in different oil/water ratios (55/45, 60/40, 65/35, 70/30, and 75/25). The salt concentration (NaCl) is an indicative parameter of stability and activity of an esterbased fluid. In this research the salt concentration was varied in 10,000, 20,000, and 50,000 ppm of NaCl. Some rheological properties of the produced fluids were studied, such as: initial gel, plastic viscosity, yield point, and apparent viscosity. Through the obtained rheological measures, the existence of two systems could be verified: fluid and flocculated. It could be noticed that the systems were influenced, directly, by the oil/water ratio and emulsifier, organophilic clay and NaCl concentrations. This study showed the viability to use an ester obtained from a regional vegetable product babaçu coconut oil to obtain an efficient and environmental safe drilling fluid
Resumo:
With the growth and development of modern society, arises the need to search for new raw materials and new technologies which present the "clean" characteristic, and do not harm the environment, but can join the energy needs of industry and transportation. The Moringa oleifera Lam, plant originating from India, and currently present in the Brazilian Northeast, presents itself as a multi-purpose plant, can be used as a coagulant in water treatment, as a natural remedy and as a feedstock for biodiesel production. In this work, Moringa has been used as a raw material for studies on the extraction and subsequently in the synthesis of biodiesel. Studies have been conducted on various techniques of Moringa oil extraction (solvents, mechanical pressing and enzymatic), being specially developed an experimental design for the aqueous extraction with the aid of the enzyme Neutrase© 0.8 L, with the aim of analyzing the influence variable pH (5.5-7.5), temperature (45-55°C), time (16-24 hours) and amount of catalyst (2-5%) on the extraction yield. In relation to study of the synthesis of biodiesel was initially carried out a conventional transesterification (50°C, KOH as a catalyst, methanol and 60 minutes reaction). Next, a study was conducted using the technique of in situ transesterification by using an experimental design variables as temperature (30-60°C), catalyst amount (2-5%), and molar ratio oil / ethanol (1:420-1:600). The extraction technique that achieved the highest extraction yield (35%) was the one that used hexane as a solvent. The extraction using 32% ethanol obtained by mechanical pressing and extraction reached 25% yield. For the enzymatic extraction, the experimental design indicated that the extraction yield was most affected by the effect of the combination of temperature and time. The maximum yield obtained in this extraction was 16%. After the step of obtaining the oil was accomplished the synthesis of biodiesel by the conventional method and the in situ technique. The method of conventional transesterification was obtained a content of 100% and esters by in situ technique was also obtained in 100% in the experimental point 7, with a molar ratio oil / alcohol 1:420, Temperature 60°C in 5% weight KOH with the reaction time of 1.5 h. By the experimental design, it was found that the variable that most influenced the ester content was late the percentage of catalyst. By physico-chemical analysis it was observed that the biodiesel produced by the in situ method fell within the rules of the ANP, therefore this technique feasible, because does not require the preliminary stage of oil extraction and achieves high levels of esters
Resumo:
The industry, over the years, has been working to improve the efficiency of diesel engines. More recently, it was observed the need to reduce pollutant emissions to conform to the stringent environmental regulations. This has attached a great interest to develop researches in order to replace the petroleum-based fuels by several types of less polluting fuels, such as blends of diesel oil with vegetable oil esters and diesel fuel with vegetable oils and alcohol, emulsions, and also microemulsions. The main objective of this work was the development of microemulsion systems using nonionic surfactants that belong to the Nonylphenols ethoxylated group and Lauric ethoxylated alcohol group, ethanol/diesel blends, and diesel/biodiesel blends for use in diesel engines. First, in order to select the microemulsion systems, ternary phase diagrams of the used blends were obtained. The systems were composed by: nonionic surfactants, water as polar phase, and diesel fuel or diesel/biodiesel blends as apolar phase. The microemulsion systems and blends, which represent the studied fuels, were characterized by density, viscosity, cetane number and flash point. It was also evaluated the effect of temperature in the stability of microemulsion systems, the performance of the engine, and the emissions of carbon monoxide, nitrogen oxides, unburned hydrocarbons, and smoke for all studied blends. Tests of specific fuel consumption as a function of engine power were accomplished in a cycle diesel engine on a dynamometer bench and the emissions were evaluated using a GreenLine 8000 analyzer. The obtained results showed a slight increase in fuel consumption when microemulsion systems and diesel/biodiesel blends were burned, but it was observed a reduction in the emission of nitrogen oxides, unburned hydrocarbons, smoke index and f sulfur oxides
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
An analytical procedure has been developed for simultaneous determination of solvent mixture vapors to enable evaluation of occupational exposure. To determine the desorption efficiency the volatile components of the solvent mixtures were generated from a glass tube filled with glass wool. This device is easy to prepare and use. These vapors were then collected in activated charcoal tubes and analyzed by capillary gas chromatography. The method was tested with a mixture of 22 solvents, including aliphatic and aromatic hydrocarbons, alcohols, ethers, esters, and ketones, oil at low concentrations. All the components were defected. When a 99: 1 mixture of carbon disulfide-dimethylformamide was used for desorption the efficiency was > 75% for most of the solvents.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
From the stem bark of Xylopia aromatica (Annonaceae), have been isolated two new labdane dimers as their methyl esters, together with the known compounds ent-labda-8(17),13(16),14-trien-18-oic acid, sitosterol and stigmasterol. The structures of the dimers were elucidated on the basis of detailed spectroscopic analyses. (C) 1999 Elsevier B.V. Ltd. All rights reserved.
Resumo:
In this work biodiesel was gotten through the transesterification reaction using the oil of castor as source of triglycerides and using the methylic route for obtaining of esters. For the characterization of biodiesel and its mixtures with mineral diesel oil, physical chemical parameters and several analytical techniques had been used, as well as: gas chromatography (GC), nuclear magnetic resonance of proton (1H NMR), infrared spectroscopy (IR) and thermal analysis. The chromatography confirmed the complete reaction of esters in biodiesel presenting a 97,08% conversion. The 1H - NMR presented singlet in 3,6 ppm corresponding to the hydrogen of the group ester RCOO CH3. The infrared presented a strong band in 1741 cm-1 referring to stretching C=O of ester and an average band in 1175 cm-1 referring C O deformation. With the data of thermal analysis it was possible to observe the thermal and oxidative stability of the samples changing the atmospheres of synthetic air and nitrogen, where stages of the thermal decomposition had been verified and had been attributed to the volatilization and/or decomposition of the triacylglycerides. The thermal degradation of the samples was carried through 150 and 210°C during 1, 12, 24 and 48 hours and was observed change in the thermogravimetric profile, therefore an increase in the number of stages of the thermal decomposition also occurred indicating characteristic intermediate composites of polymerization, being this confirmed through the rheological study that presented brusque increase of viscosity. The kinetic study showed that the activation energy has the following order: biodiesel > mineral diesel oil > mixtures biodiesel/diesel