990 resultados para object orientation processing
Resumo:
Memoria de TFC en el que se analiza el estándar SQL:1999 y se compara con PostgreeSQL y Oracle.
Resumo:
In (1) H magnetic resonance spectroscopy, macromolecule signals underlay metabolite signals, and knowing their contribution is necessary for reliable metabolite quantification. When macromolecule signals are measured using an inversion-recovery pulse sequence, special care needs to be taken to correctly remove residual metabolite signals to obtain a pure macromolecule spectrum. Furthermore, since a single spectrum is commonly used for quantification in multiple experiments, the impact of potential macromolecule signal variability, because of regional differences or pathologies, on metabolite quantification has to be assessed. In this study, we introduced a novel method to post-process measured macromolecule signals that offers a flexible and robust way of removing residual metabolite signals. This method was applied to investigate regional differences in the mouse brain macromolecule signals that may affect metabolite quantification when not taken into account. However, since no significant differences in metabolite quantification were detected, it was concluded that a single macromolecule spectrum can be generally used for the quantification of healthy mouse brain spectra. Alternatively, the study of a mouse model of human glioma showed several alterations of the macromolecule spectrum, including, but not limited to, increased mobile lipid signals, which had to be taken into account to avoid significant metabolite quantification errors.
Resumo:
Metacaspases are cysteine peptidases that could play a role similar to caspases in the cell death programme of plants, fungi and protozoa. The human protozoan parasite Leishmania major expresses a single metacaspase (LmjMCA) harbouring a central domain with the catalytic dyad histidine and cysteine as found in caspases. In this study, we investigated the processing sites important for the maturation of LmjMCA catalytic domain, the cellular localization of LmjMCA polypeptides, and the functional role of the catalytic domain in the cell death pathway of Leishmania parasites. Although LmjMCA polypeptide precursor form harbours a functional mitochondrial localization signal (MLS), we determined that LmjMCA polypeptides are mainly localized in the cytoplasm. In stress conditions, LmjMCA precursor forms were extensively processed into soluble forms containing the catalytic domain. This domain was sufficient to enhance sensitivity of parasites to hydrogen peroxide by impairing the mitochondrion. These data provide experimental evidences of the importance of LmjMCA processing into an active catalytic domain and of its role in disrupting mitochondria, which could be relevant in the design of new drugs to fight leishmaniasis and likely other protozoan parasitic diseases.
Resumo:
Do our brains implicitly track the energetic content of the foods we see? Using electrical neuroimaging of visual evoked potentials (VEPs) we show that the human brain can rapidly discern food's energetic value, vis à vis its fat content, solely from its visual presentation. Responses to images of high-energy and low-energy food differed over two distinct time periods. The first period, starting at approximately 165 ms post-stimulus onset, followed from modulations in VEP topography and by extension in the configuration of the underlying brain network. Statistical comparison of source estimations identified differences distributed across a wide network including both posterior occipital regions and temporo-parietal cortices typically associated with object processing, and also inferior frontal cortices typically associated with decision-making. During a successive processing stage (starting at approximately 300 ms), responses differed both topographically and in terms of strength, with source estimations differing predominantly within prefrontal cortical regions implicated in reward assessment and decision-making. These effects occur orthogonally to the task that is actually being performed and suggest that reward properties such as a food's energetic content are treated rapidly and in parallel by a distributed network of brain regions involved in object categorization, reward assessment, and decision-making.
Resumo:
The objective of this work was to evaluate the chemical and physical characteristics of grains of soybean (Glycine max) cultivars for food processing. The soybean cultivars evaluated were: grain-type - BRS 133 and BRS 258; food-type - BRS 213 (null lipoxygenases), BRS 267 (vegetable-type) and BRS 216 (small grain size). BRS 267 and BRS 216 cultivars showed higher protein content, indicating that they could promote superior nutritional value. BRS 213 cultivar showed the lowest lipoxygenase activity, and BRS 267, the lowest hexanal content. These characteristics can improve soyfood flavor. After cooking, BRS 267 cultivar grains presented a higher content of aglycones (more biologically active form of isoflavones) and oleic acid, which makes it proper for functional foods and with better stability for processing, and also showed high content of fructose, glutamic acid and alanine, compounds related to the soybean mild flavor. Because of its large grain size, BRS 267 is suitable for tofu and edamame, while small-grain-sized BRS 216 is good for natto and for soybean sprouts production. BRS 216 and BRS 213 cultivars presented shorter cooking time, which may be effective for reducing processing costs.
Resumo:
Validation is the main bottleneck preventing theadoption of many medical image processing algorithms inthe clinical practice. In the classical approach,a-posteriori analysis is performed based on someobjective metrics. In this work, a different approachbased on Petri Nets (PN) is proposed. The basic ideaconsists in predicting the accuracy that will result froma given processing based on the characterization of thesources of inaccuracy of the system. Here we propose aproof of concept in the scenario of a diffusion imaginganalysis pipeline. A PN is built after the detection ofthe possible sources of inaccuracy. By integrating thefirst qualitative insights based on the PN withquantitative measures, it is possible to optimize the PNitself, to predict the inaccuracy of the system in adifferent setting. Results show that the proposed modelprovides a good prediction performance and suggests theoptimal processing approach.
Resumo:
A crucial step in the life cycle of arenaviruses is the biosynthesis of the mature fusion-active viral envelope glycoprotein (GP) that is essential for virus-host cell attachment and entry. The maturation of the arenavirus GP precursor (GPC) critically depends on proteolytic processing by the cellular proprotein convertase (PC) subtilisin kexin isozyme-1 (SKI-1)/site-1 protease (S1P). Here we undertook a molecular characterization of the SKI-1/S1P processing of the GPCs of the prototypic arenavirus lymphocytic choriomeningitis virus (LCMV) and the pathogenic Lassa virus (LASV). Previous studies showed that the GPC of LASV undergoes processing in the endoplasmic reticulum (ER)/cis-Golgi compartment, whereas the LCMV GPC is cleaved in a late Golgi compartment. Herein we confirm these findings and provide evidence that the SKI-1/S1P recognition site RRLL, present in the SKI-1/S1P prodomain and LASV GPC, but not in the LCMV GPC, is crucial for the processing of the LASV GPC in the ER/cis-Golgi compartment. Our structure-function analysis revealed that the cleavage of arenavirus GPCs, but not cellular substrates, critically depends on the autoprocessing of SKI-1/S1P, suggesting differences in the processing of cellular and viral substrates. Deletion mutagenesis showed that the transmembrane and intracellular domains of SKI-1/S1P are dispensable for arenavirus GPC processing. The expression of a soluble form of the protease in SKI-I/S1P-deficient cells resulted in the efficient processing of arenavirus GPCs and rescued productive virus infection. However, exogenous soluble SKI-1/S1P was unable to process LCMV and LASV GPCs displayed at the surface of SKI-I/S1P-deficient cells, indicating that GPC processing occurs in an intracellular compartment. In sum, our study reveals important differences in the SKI-1/S1P processing of viral and cellular substrates.
Resumo:
Il existe quatre filières de formation pour les psychologues conseillères et conseillers en orientation scolaire et professionnelle en Suisse. Une d'entre elles est de niveau universitaire et les trois autres sont de niveau post-grade (deuxième ou troisième cycle). Une des filières post-grade est proposée par une Université de sciences appliquées. Tout en étant spécifiques aux régions linguistiques, ces formations rendent compte d'un profil de compétences défini au niveau national. Le modèle théorique qui fonde généralement ces formations est éclectique. L'apprentissage social et la problématique de l'ajustement au contexte sont également des aspects qui constituent cette approche intégrative.
Resumo:
The aim of this paper is to bring into consideration a way of studying culture in infancy. An emphasis is put on the role that the material object plays in early interactive processes. Accounted as a cultural artefact, the object is seen as a fundamental element within triadic mother‐object‐ infant interactions and is believed to be a driving force both for communicative and cognitive development. In order to reconsider the importance of the object in child development and to present an approach of studying object construction, accounts in literature on early communication development and the importance of the object are reviewed and discussed under the light of the cultural specificity of the material object.
Resumo:
A recent publication in this journal [Neumann et al., Forensic Sci. Int. 212 (2011) 32-46] presented the results of a field study that revealed the data provided by the fingermarks not processed in a forensic science laboratory. In their study, the authors were interested in the usefulness of this additional data in order to determine whether such fingermarks would have been worth submitting to the fingermark processing workflow. Taking these ideas as a starting point, this communication here places the fingermark in its context of a case brought before a court, and examines the question of processing or not processing a fingermark from a decision-theoretic point of view. The decision-theoretic framework presented provides an answer to this question in the form of a quantified expression of the expected value of information (EVOI) associated with the processed fingermark, which can then be compared with the cost of processing the mark.
Resumo:
The objective of this work was to analyze changes in the isoflavone profile, determined by high performance liquid chromatography, at different processing stages and after refrigeration of tempeh. For tempeh production, clean soybean grains from cultivars BR 36 (low isoflavone content) and IAS 5 (high) were dehulled, and the separated cotyledons were hydrated and then cooked in boiling water for 30 min. Spores of the fungus Rhizopus microsporus var. oligosporus were inoculated in the cooked and cooled cotyledons, and incubated at 32ºC for 6, 12, 18, and 24 hours in perforated polypropylene bags, for fermentation. The resulting tempeh was stored at 4ºC for 6, 12, 18, and 24 hours. After 24-hour fermentation, isoflavone glucosides were 50% reduced, and the aglycone forms in the tempeh from both cultivars was increased. The malonyl forms reduced 83% after cooking. Less than 24 hours of refrigeration did not affect the isoflavone profile of tempeh from either cultivar, which is a good indicator of its quality. The tempeh maintains the high and low isoflavone content of the cultivars, which indicates that cultivar differences in this trait should be considered when processing tempeh.
Resumo:
In this paper the problem of intensity inhomogeneity athigh magnetic field on magnetic resonance images isaddressed. Specifically, rat brain images at 9.4Tacquired with a surface coil are bias corrected. Wepropose a low- pass frequency model that takes intoaccount not only background-object contours but alsoother important contours inside the image. Twopre-processing filters are proposed: first, to create avolume of interest without contours, and second, toextrapolate the image values of such masked area to thewhole image. Results are assessed quantitatively andvisually in comparison to standard low pass filterapproach, and they show as expected better accuracy inenhancing image intensity.
Resumo:
Controversial results have been reported concerning the neural mechanisms involved in the processing of rewards and punishments. On the one hand, there is evidence suggesting that monetary gains and losses activate a similar fronto-subcortical network. On the other hand, results of recent studies imply that reward and punishment may engage distinct neural mechanisms. Using functional magnetic resonance imaging (fMRI) we investigated both regional and interregional functional connectivity patterns while participants performed a gambling task featuring unexpectedly high monetary gains and losses. Classical univariate statistical analysis showed that monetary gains and losses activated a similar fronto-striatallimbic network, in which main activation peaks were observed bilaterally in the ventral striatum. Functional connectivity analysis showed similar responses for gain and loss conditions in the insular cortex, the amygdala, and the hippocampus that correlated with the activity observed in the seed region ventral striatum, with the connectivity to the amygdala appearing more pronounced after losses. Larger functional connectivity was found to the medial orbitofrontal cortex for negative outcomes. The fact that different functional patterns were obtained with both analyses suggests that the brain activations observed in the classical univariate approach identifi es the involvement of different functional networks in the current task. These results stress the importance of studying functional connectivity in addition to standard fMRI analysis in reward-related studies.