956 resultados para nutrient content
Resumo:
Provisioning along pedestrian trails by tourists much increased the nutrient quality and patchiness of food (NqPF)for Tibetan macaques (Macaca thibetana) at Mt Emei in spring and summer. In the habitat at a temperate-subtropical transition zone, the mncaque's NqPF could be ordered in a decreasing rank from spring summer to autumn to winter With the aid of a radio-tracking system, I collected ranging data on a multigroup community in three 70-day periods representing the different seasons in 1991-92, Rank-order correlation on the data show that with the decline of NqPF; the groups tended to increase days away from the trail, their effective range size (ERS) their exclusive area (EA) and the number of days spent in the EA, and reduced their group/community density and the ratio of the overlapped range to the seasonal range (ROR). In icy/snowy winter; the macaques searched for mature leaves slowly and carefully in the largest seasonal range with a considerable portion that was nor used in other seasons. Of the responses, the ROR decreased with the reduction in group/community density; and the ERS was the function of both group size (+) and intergroup rank (-) when favorite food was highly clumped. All above responses were clearly bound to maximize foraging effectiveness and minimize energy expenditure, and their integration in term of changes in time and space leads to better understanding macaque ecological adaptability. Based on this study and previous work on behavioral and physiological factors, I suggest a unifying theory of intergroup interactions. Ir! addition, as the rate of behavioral interactions,was also related to the group density, I Waser's (1976) gas model probably applies to behavioral, as well as spatial, data on intergroup interactions.
Resumo:
Tissue engineering offers a paradigm shift in the treatment of back pain. Engineered intervertebral discs could replace degenerated tissue and overcome the limitations of current treatments, which substantially alter the biomechanical properties of the spine. The centre of the disc, the nucleus pulposus, is an amorphous gel with a large bound water content and it can resist substantial compressive loads. Due to similarities in their compositions, hydrogels have frequently been considered as substitutes for the nucleus pulposus. However, there has been limited work characterising the time-dependent mechanical behaviour of hydrogel scaffolds for nucleus pulposus tissue engineering. Poroelastic behaviour, which plays a key role in nutrient transport, is of particular importance. Here, we investigate the time-dependent mechanical properties of gelatin and agar hydrogels and of gelatin-agar composites. The time-dependent properties of these hydrogels are explored using viscoelastic and poroelastic frameworks. Several gel formulations demonstrate comparable equilibrium elastic behaviour to the nucleus pulposus under unconfined compression, but permeability values that are much greater than those of the native tissue. A range of time-dependent responses are observed in the composite gels examined, presenting the opportunity for targeted design of custom hydrogels with combinations of mechanical properties optimized for tissue engineering applications. © 2011 Elsevier Ltd.
Resumo:
The capability to automatically identify shapes, objects and materials from the image content through direct and indirect methodologies has enabled the development of several civil engineering related applications that assist in the design, construction and maintenance of construction projects. Examples include surface cracks detection, assessment of fire-damaged mortar, fatigue evaluation of asphalt mixes, aggregate shape measurements, velocimentry, vehicles detection, pore size distribution in geotextiles, damage detection and others. This capability is a product of the technological breakthroughs in the area of Image and Video Processing that has allowed for the development of a large number of digital imaging applications in all industries ranging from the well established medical diagnostic tools (magnetic resonance imaging, spectroscopy and nuclear medical imaging) to image searching mechanisms (image matching, content based image retrieval). Content based image retrieval techniques can also assist in the automated recognition of materials in construction site images and thus enable the development of reliable methods for image classification and retrieval. The amount of original imaging information produced yearly in the construction industry during the last decade has experienced a tremendous growth. Digital cameras and image databases are gradually replacing traditional photography while owners demand complete site photograph logs and engineers store thousands of images for each project to use in a number of construction management tasks. However, construction companies tend to store images without following any standardized indexing protocols, thus making the manual searching and retrieval a tedious and time-consuming effort. Alternatively, material and object identification techniques can be used for the development of automated, content based, construction site image retrieval methodology. These methods can utilize automatic material or object based indexing to remove the user from the time-consuming and tedious manual classification process. In this paper, a novel material identification methodology is presented. This method utilizes content based image retrieval concepts to match known material samples with material clusters within the image content. The results demonstrate the suitability of this methodology for construction site image retrieval purposes and reveal the capability of existing image processing technologies to accurately identify a wealth of materials from construction site images.
Resumo:
This book explores the processes for retrieval, classification, and integration of construction images in AEC/FM model based systems. The author describes a combination of techniques from the areas of image and video processing, computer vision, information retrieval, statistics and content-based image and video retrieval that have been integrated into a novel method for the retrieval of related construction site image data from components of a project model. This method has been tested on available construction site images from a variety of sources like past and current building construction and transportation projects and is able to automatically classify, store, integrate and retrieve image data files in inter-organizational systems so as to allow their usage in project management related tasks. objects. Therefore, automated methods for the integration of construction images are important for construction information management. During this research, processes for retrieval, classification, and integration of construction images in AEC/FM model based systems have been explored. Specifically, a combination of techniques from the areas of image and video processing, computer vision, information retrieval, statistics and content-based image and video retrieval have been deployed in order to develop a methodology for the retrieval of related construction site image data from components of a project model. This method has been tested on available construction site images from a variety of sources like past and current building construction and transportation projects and is able to automatically classify, store, integrate and retrieve image data files in inter-organizational systems so as to allow their usage in project management related tasks.
Resumo:
The Architecture, Engineering, Construction and Facilities Management (AEC/FM) industry is rapidly becoming a multidisciplinary, multinational and multi-billion dollar economy, involving large numbers of actors working concurrently at different locations and using heterogeneous software and hardware technologies. Since the beginning of the last decade, a great deal of effort has been spent within the field of construction IT in order to integrate data and information from most computer tools used to carry out engineering projects. For this purpose, a number of integration models have been developed, like web-centric systems and construction project modeling, a useful approach in representing construction projects and integrating data from various civil engineering applications. In the modern, distributed and dynamic construction environment it is important to retrieve and exchange information from different sources and in different data formats in order to improve the processes supported by these systems. Previous research demonstrated that a major hurdle in AEC/FM data integration in such systems is caused by its variety of data types and that a significant part of the data is stored in semi-structured or unstructured formats. Therefore, new integrative approaches are needed to handle non-structured data types like images and text files. This research is focused on the integration of construction site images. These images are a significant part of the construction documentation with thousands stored in site photographs logs of large scale projects. However, locating and identifying such data needed for the important decision making processes is a very hard and time-consuming task, while so far, there are no automated methods for associating them with other related objects. Therefore, automated methods for the integration of construction images are important for construction information management. During this research, processes for retrieval, classification, and integration of construction images in AEC/FM model based systems have been explored. Specifically, a combination of techniques from the areas of image and video processing, computer vision, information retrieval, statistics and content-based image and video retrieval have been deployed in order to develop a methodology for the retrieval of related construction site image data from components of a project model. This method has been tested on available construction site images from a variety of sources like past and current building construction and transportation projects and is able to automatically classify, store, integrate and retrieve image data files in inter-organizational systems so as to allow their usage in project management related tasks.
Resumo:
Images represent a valuable source of information for the construction industry. Due to technological advancements in digital imaging, the increasing use of digital cameras is leading to an ever-increasing volume of images being stored in construction image databases and thus makes it hard for engineers to retrieve useful information from them. Content-Based Search Engines are tools that utilize the rich image content and apply pattern recognition methods in order to retrieve similar images. In this paper, we illustrate several project management tasks and show how Content-Based Search Engines can facilitate automatic retrieval, and indexing of construction images in image databases.
Resumo:
In this study a 5-step reduced chemical kinetic mechanism involving nine species is developed for combustion of Blast Furnace Gas (BFG), a multi-component fuel containing CO/H2/CH4/CO2, typically with low hydrogen, methane and high water fractions, for conditions relevant for stationary gas-turbine combustion. This reduced mechanism is obtained from a 49-reaction skeletal mechanism which is a modified subset of GRI Mech 3.0. The skeletal and reduced mechanisms are validated for laminar flame speeds, ignition delay times and flame structure with available experimental data, and using computational results with a comprehensive set of elementary reactions. Overall, both the skeletal and reduced mechanisms show a very good agreement over a wide range of pressure, reactant temperature and fuel mixture composition. © 2012 The Combustion Institute..
Resumo:
In China, especially in Three-Gorges Reservoir, our knowledge of the algal growth potential and nutrient limitation was still limited. In the spring of 2006, the water column ratios of total nitrogen/total phosphorus were investigated and algal bioassays performed to determine algal growth potential of waters and nutrient limitation of mainstream and Xiangxi Bay of Three-Gorges Reservoir. The results showed sampling sites in mainstream were co-limited by N and P or P-limited alone, and sites in Xiangxi Bay were N-limited alone. Fe likely played an important role in determining the appearance and disappearance of algal blooms of Three-Gorges Reservoir. Native algae, Pseudokirchneriella subcapitata and Cyclotella meneghiniana, had high growth potential in Three-Gorges Reservoir.
Resumo:
A 2-year investigation of growth and food availability of silver carp and bighead was carried out using stable isotope and gut content analysis in a large pen in Meiliang Bay of Lake Taihu, China. Both silver carp and bighead exhibited significantly higher delta 13C in 2005 than in 2004, which can probably be attributed to two factors: (i) the difference between isotopic compositions at the base of the pelagic food web and (ii) the difference between the compositions of prey items and stable isotopes. The significantly positive correlations between body length, body weight and stable isotope ratios indicated that isotopic changes in silver carp and bighead resulted from the accumulation of biomass concomitant with rapid growth. Because of the drastic decrease in zooplankton in the diet in 2005, silver carp and bighead grew faster in 2004 than in 2005. Bighead carp showed a lower trophic level than silver carp in 2005 as indicated by stable nitrogen isotope ratios, which was possibly explained by the interspecific difference between the prey species and the food quality of silver carp and bighead.
Resumo:
Nutrient-rich effluents caused rising concern due to eutrophication of aquatic environment by utilization of a large amount of formula feed. Nutrient removal and water quality were investigated by planting aquatic vegetable on artificial beds in 36-m(2) concrete fishponds. After treatment of 120 days, 30.6% of total nitrogen (TN) and 18.2% of total phosphorus (TP) were removed from the total input nutrients by 6-m(2) aquatic vegetable Ipomoea aquatica. The concentrations of TN, TP, chemical oxygen demand (COD) and chlorophyll a in planted ponds were significantly lower than those in non-planted ponds (P<0.05). Transparency of water in planted ponds was much higher than that of control ponds. No significant differences in the concentration of total ammonia nitrogen (TAN), nitrate nitrogen (NO3-N) and nitrite nitrogen (NO2--N) were found between planted and non-planted ponds. These results suggested that planting aquatic vegetable with one-sixth covered area of the fishponds could efficiently remove nutrient and improve water quality.
Resumo:
Both arsenic pollution and eutrophication are prominent environmental issues when considering the problem of global water pollution. It is important to reveal the effects of arsenic species on cyanobacterial growth and toxin yields to assess ecological risk of arsenic pollution or at least understand naturally occurring blooms. The sensitivity of cyanobacteria to arsenate has often been linked to the structural similarities of arsenate and phosphate. Thus, we approached the effect of arsenate with concentrations from 10(-8) to 10(-4) M on Microcystis strain PCC7806 under various phosphate regimes. The present study showed that Microcystis strain PCC7806 was arsenate tolerant up to 10(-4) M. And such tolerance was without reference to both content of intra- and extra-cellular phosphate. It seems that arsenate involved the regulation of microcystin synthesis and cellular polyphosphate contributed to microcystin production of Microcystis responding to arsenate, since there was a positive linear correlation of the cellular microcystin quota with the exposure concentration of arsenate when the cells were not preconditioned to phosphate starvation. It is presumed that arsenate could help to actively export microcystins from living Microcystis cells when preconditioned to phosphate starvation and incubated with the medium containing 1 mu M phosphate. This study firstly provided evidence that microcystin content and/or release of Microcystis might be impacted by arsenate if it exists in harmful algal blooms. (C) 2008 Wiley Periodicals, Inc. Environ Toxicol 24:97 94, 2009.
Resumo:
In order to improve algal biofuel production on a commercial-scale, an understanding of algal growth and fuel molecule accumulation is essential. A mathematical model is presented that describes biomass growth and storage molecule (TAG lipid and starch) accumulation in the freshwater microalga Chlorella vulgaris, under mixotrophic and autotrophic conditions. Biomass growth was formulated based on the Droop model, while the storage molecule production was calculated based on the carbon balance within the algal cells incorporating carbon fixation via photosynthesis, organic carbon uptake and functional biomass growth. The model was validated with experimental growth data of C. vulgaris and was found to fit the data well. Sensitivity analysis showed that the model performance was highly sensitive to variations in parameters associated with nutrient factors, photosynthesis and light intensity. The maximum productivity and biomass concentration were achieved under mixotrophic nitrogen sufficient conditions, while the maximum storage content was obtained under mixotrophic nitrogen deficient conditions.
Resumo:
1. In previous work, phytoplankton regulation in freshwater lakes has been associated with many factors. Among these, the ratio of total nitrogen to total phosphorus (TN : TP) has been widely proposed as an index to identify whether phytoplankton are N- or P-limited. From another point of view, it has been suggested that planktivorous fish can be used to control phytoplankton. 2. Large-scale investigations of phytoplankton biomass [measured as chlorophyll a, (chl-a)] were carried out in 45 mid-lower Yangtze shallow lakes to test hypotheses concerning nutrient limitation (assessed with TN : TP ratios) and phytoplankton control by planktivorous fish. 3. Regression analyses indicated that TP was the primary regulating factor and TN the second regulating factor for both annual and summer phytoplankton chl-a. In separate nutrient-chl-a regression analyses for lakes of different TN : TP ratios, TP was also superior to TN in predicting chl-a at all particular TN : TP ranges and over the entire TN : TP spectrum. Further analyses found that chl-a : TP was not influenced by TN : TP, while chl-a : TN was positively and highly correlated to TP : TN. 4. Based on these results, and others in the literature, we argue that the TN : TP ratio is inappropriate as an index to identify limiting nutrients. It is almost impossible to specify a 'cut-off' TN : TP ratio to identify a limiting nutrient for a multi-species community because optimal N : P ratios vary greatly among phytoplankton species. 5. Lakes with yields of planktivorous fish (silver and bighead carp, the species native to China) > 100 kg ha(-1) had significantly higher chl-a and lower Secchi depth than those with yields < 100 kg ha(-1). TP-chl-a and TP-Secchi depth relationships are not significantly different between lakes with yields > 100 kg ha(-1) or < 100 kg ha(-1). These results indicate that the fish failed to decrease chl-a yield or enhance Z(SD). Therefore, silver carp and bighead carp are not recommended as a biotic agent for phytoplankton control in lake management if the goal is to control the entire phytoplankton and to enhance water quality.
Resumo:
Changes in growth, photosynthetic pigments, and photosystem II (PS II) photochemical efficiency as well as production of siderophores of Microcystis aeruginosa and Microcystis wesenbergii were determined in this experiment. Results showed growths of M. aeruginosa and M. wesenbergii, measured by means of optical density at 665 nm, were severely inhibited under an iron-limited condition, whereas they thrived under an iron-replete condition. The contents of chlorophyll-a, carotenoid, phycocyanin, and allophycocyanin under an iron-limited condition were lower than those under an iron-replete condition, and they all reached maximal contents on day 4 under the iron-limited condition. PS II photochemical efficiencies (maximal PS II quantum yield), saturating light levels (I-k ) and maximal electron transport rates (ETRmax) of M. aeruginosa and M. wesenbergii declined sharply under the iron-limited condition. The PS II photochemical efficiency and ETRmax of M. aeruginosa rose , whereas in the strain of M. wesenbergii, they declined gradually under the iron-replete condition. In addition, I-k of M. aeruginosa and M. wesenbergii under the iron-replete condition did not change obviously. Siderophore production of M. aeruginosa was higher than that of M. wesenbergii under the iron-limited condition. It was concluded that M. aeruginosa requires higher iron concentration for physiological and biochemical processes compared with M. wesenbergii, but its tolerance against too high a concentration of iron is weaker than M. wesenbergii.