964 resultados para neurofibrillary degeneration
Resumo:
Objetivo: Describir el comportamiento del desprendimiento del vítreo posterior (DVP) en pacientes expuestos a cirugía de catarata mediante la biomicroscopia, la ecografía ocular y la tomografía de coherencia óptica macular. Materiales y métodos: Se realizó un estudio descriptivo, una serie de casos clínicos de 13 pacientes expuestos a cirugía de catarata en la Fundación Oftalmológica Nacional entre febrero a julio de 2015, con seguimiento a 12 meses. Durante 6 visitas se les realizó toma de agudeza visual mejor corregida y biomicroscopía. Tambíen se les realizó ecografia ocular y tomografia de coherencia óptica macular. Resultados: El porcentaje de DVP por biomicroscopia cambió desde un 7.7% a un 38.4%. El porcentaje de DVP por ecografía en el área nasal cambió de 92.3% a 76.9%. En el área temporal la tasa de DVP cambió de 84.6% y a 76.9%. En al área superior se mantuvo en un 61.5%. En el área inferior varió de un 69.2% a un 76.9%. Y por último, en el área macular de un 53.8% a un 76.9%. El porcentaje de DVP por OCT cambio desde un 69.2% a un 76.9%, en la visita cero y la visita cuatro, respectivamente. Conclusiones: La cirugía de catarata acelera el proceso del DVP. Hubo una progresión del DVP según la biomicroscopia y el OCT, la ecografía no la consideramos una herramiento eficaz para describir la progresión del DVP.
Resumo:
Introducción: A partir de la década de los cincuenta el manejo de la enfermedad valvular presenta cambios significativos cuando se incorporan los reemplazos valvulares tanto mecánicos como biológicos dentro de las opciones de tratamiento quirúrgico (1). Las válvulas biológicas se desarrollaron como una alternativa que buscaba evitar los problemas relacionados con la anticoagulación y con la idea de utilizar un tejido que se comportara hemodinámicamente como el nativo. Este estudio está enfocado en establecer la sobrevida global y la libertad de reoperación de la válvula de los pacientes sometidos a reemplazo valvular aórtico y mitral biológicos en la Fundación Cardioinfantil - IC a 1, 3, 5 y 10 años. Materiales y métodos: Estudio de cohorte retrospectiva de supervivencia de pacientes sometidos a reemplazo valvular aórtico y/o mitral biológico intervenidos en la Fundación Cardioinfantil entre 2005 y 2013. Resultados: Se obtuvieron 919 pacientes incluidos en el análisis general y 876 (95,3%) pacientes con seguimiento efectivo para el análisis de sobrevida. La edad promedio fue 64años. La sobrevida a 1, 3, 5 y 10 años fue 95%,90%,85% y 69% respectivamente. El seguimiento efectivo para el desenlace reoperación fue del 55% y se encontró una libertad de reoperación del 99%, 96%, 93% y 81% a los 1, 3, 5 y 10 años. No hubo diferencias significativas entre la localización de la válvula ni en el tipo de válvula aortica empleada. Conclusiones: La sobrevida de los pacientes que son llevados a reemplazo valvular biológico en este estudio es comparable a grandes cohortes internacionales. La sobrevida de los pacientes llevados a reemplazo valvular con prótesis biológicas en posición mitral y aortica fue similar a 1, 3, 5 y 10 años.
Resumo:
A discoespondilite é uma doença infecciosa rara que afecta, de forma crónica, os discos intervertebrais e as extremidades adjacentes dos corpos vertebrais. Geralmente advém de uma infecção disseminada por via hematógena e os agentes mais frequentes são bacterianos e são principalmente Staphylococcus spp., Streptococcus spp., E. Coli e Brucella spp. Também pode ser devida a infecções fúngicas, parasitárias ou migração de corpos estranhos. É caracterizada pela degenerescência do disco intervertebral e lesões escleróticas e proliferativas das extremidades dos corpos vertebrais. O principal sinal clínico desta doença é a hiperestesia paravertebral e alterações da marcha ou relutância ao movimento. Febre e anorexia são menos frequentes do que seria de esperar e os sinais neurológicos são considerados raros. O diagnóstico desta doença é geralmente radiográfico e a determinação do agente pode ser conseguida por cultura de material discal, hemocultura ou urocultura. Podem ser usados meios de imagiologia avançada como TAC e RM para melhor avaliar a extensão das lesões e o envolvimento dos tecidos circunvizinhos. A realização de hemogramas raramente revela alterações significativas embora possa existir leucocitose. O tratamento médico é eficaz em aproximadamente 76% dos casos e deve ser feito com base em cultura e TSA mas, de forma empírica, as cefalosporinas de primeira geração são frequentemente utilizadas. Em alguns casos pode ser necessária a estabilização ou desbridamento cirúrgicos. O estudo retrospectivo realizado no âmbito deste trabalho, teve como objectivo avaliar os sinais clínicos, radiográficos e laboratoriais , assim como o maneio médico e cirúrgico de 10 casos de discoespondilite confirmada radiográfica e clinicamente, num período de 2 anos. Observou-se maior prevalência da doença em machos, em cães jovens e adultos, e raças de grande porte. A região mais afectada foi a junção lombossagrada, e o sinal mais observado foi a dor paraespinhal. No entanto os sinais neurológicos foram mais frequentes do que o descrito. Os agentes isolados em cultura de material discal não foram os mais comuns. O tratamento médico instituído pelos veterinários foi eficaz em 6 dos casos, Foi necessária intervenção cirúrgica em 3 e 1 animal não recuperou totalmente até à conclusão deste estudo.
Resumo:
A Miopatia atípica é uma doença emergente em alguns países europeus, que afecta cavalos de pasto, caracterizada por fraquez súbita, decúbito prolongado e degeneração muscular aguda. Tem-se verificado recentemente um aumento do número de surtos, incluindo em países em que a doença nunca fora diagnosticada anteriormente, o que justifica o presente estudo, que tem como objectivo a contribuição para a descrição do perfil epidemológico da MA, com base na descrição de dados geográficos, demográficos e clínicos de casos confirmados e suspeitos de MA, observados num Hospital Equino de referência, na Bélgica, durante o Outono de 2010. Foram incluídos na análise retrospectiva da série de casos clínicos estudados tanto a identificação fenotípica de cada indivíduo, assim como as respectivas práticas de maneio, incluindo condições de pastoreio, história clínica e achados bioquímicos e, sempre que possível, histopatológicos. Os sinais clínicos ocorreram em condições climáticas desfavoráveis. Os sintomas mais frequentes incluíram fraqueza e recusa em mover-se. As concentrações de creatinina quinase, CK, variaram entre 20360 UI/L a 213350 UI/L nos casos confirmados, CC e casos de elevada probabilidade, CEP para miopatia atípica, MA. A associação de MA com as condições climáticas sugere que o maneio das pastagens é de extrema importância na prevenção da condição.
Resumo:
Background: Huntington disease ( HD) is characterized by the progressive death of medium spiny dopamine receptor bearing striatal GABAergic neurons. In addition, microglial activation in the areas of neuronal loss has recently been described in postmortem studies. Activated microglia are known to release neurotoxic cytokines, and these may contribute to the pathologic process. Methods: To evaluate in vivo the involvement of microglia activation in HD, the authors studied patients at different stages of the disease using [ C-11]( R)-PK11195 PET, a marker of microglia activation, and [ C-11] raclopride PET, a marker of dopamine D2 receptor binding and hence striatal GABAergic cell function. Results: In HD patients, a significant increase in striatal [ C-11]( R)-PK11195 binding was observed, which significantly correlated with disease severity as reflected by the striatal reduction in [ C-11] raclopride binding, the Unified Huntington's Disease Rating Scale score, and the patients' CAG index. Also detected were significant increases in microglia activation in cortical regions including prefrontal cortex and anterior cingulate. Conclusions: These [ C-11]( R)-PK11195 PET findings show that the level of microglial activation correlates with Huntington disease ( HD) severity. They lend support to the view that microglia contribute to the ongoing neuronal degeneration in HD and indicate that [ C-11]( R)-PK11195 PET provides a valuable marker when monitoring the efficacy of putative neuroprotecting agents in this relentlessly progressive genetic disorder.
Resumo:
The degeneration of dopaminergic neurons in the substantia nigra has been linked to the formation of the endogenous neurotoxin 5-S-cysteinyl-dopamine. Sulforaphane (SFN), an isothiocyanate derived from the corresponding precursor glucosinolate found in cruciferous vegetables has been observed to exert a range of biological activities in various cell populations. In this study, we show that SFN protects primary cortical neurons against 5-S-cysteinyl-dopamine induced neuronal injury. Pre-treatment of cortical neurons with SFN (0.01-1 microM) resulted in protection against 5-S-cysteinyl-dopamine-induced neurotoxicity, which peaked at 100 nM. This protection was observed to be mediated by the ability of SFN to modulate the extracellular signal-regulated kinase 1 and 2 and the activation of Kelch-like ECH-associated protein 1/NF-E2-related factor-2 leading to the increased expression and activity of glutathione-S-transferase (M1, M3 and M5), glutathione reductase, thioredoxin reductase and NAD(P)H oxidoreductase 1. These data suggest that SFN stimulates the NF-E2-related factor-2 pathway of antioxidant gene expression in neurons and may protect against neuronal injury relevant to the aetiology of Parkinson's disease.
Resumo:
There is increasing evidence to suggest neuroinflammatory processes contribute to the cascade of events that lead to the progressive neuronal damage observed in neurodegenerative disorders such as Parkinson’s disease and Alzheimer’s disease. The molecular mechanisms underlying such neurodegenerative processes are rather complex and involve modulation of the mitogen-activated protein kinase (MAPK) and NF-κB pathways leading to the generation of nitric oxide (NO). Such a small molecule may diffuse to the neighbouring neurons and trigger neuronal death through the inhibition of mitochondrial respiration and increases in the reactive oxygen and nitrogen species. Recently, attention has focused on the neuroprotective effects of flavonoids which have been effective in protecting against both age-related cognitive and motor decline in vivo. Although, the precise mechanisms by which flavonoids may exert their neuroprotective effects remain unclear, accumulating evidence suggest that they may exert their neuroprotective effects through the modulation of the MAP Kinase and PI3 Kinase signaling pathways. The aim of the present chapter is to highlight the potential neuroprotective role of dietary flavonoids in terms of their ability to modulate neuroinflammation in the central nervous system. We will provide an outline of the role glial cells play in neuroinflammation and describe the involvement of inflammatory mediators, produced by glia, in the cascade of events leading to neuronal degeneration. We will then present the evidence that flavonoids may modulate neuroinflammation by inhibiting the production of these inflammatory agents and summarise their potential mechanisms of action.
Resumo:
Background Riluzole is a neuroprotective drug used in the treatment of motor neurone disease. Recent evidence suggests that riluzole can up-regulate the expression and activity of the astrocyte glutamate transporter, GLT-1. Given that regulation of glutamate transport is predicted to be neuroprotective in Parkinson's disease, we tested the effect of riluzole in parkinsonian rats which had received a unilateral 6-hydroxydopamine injection into the median forebrain bundle. Results Rats were treated with intraperitoneal riluzole (4 mg/kg or 8 mg/kg), 1 hour before the lesion then once daily for seven days. Riluzole produced a modest but significant attenuation of dopamine neurone degeneration, assessed by suppression of amphetamine-induced rotations, preservation of tyrosine hydroxylase positive neuronal cell bodies in the substantia nigra pars compacta and attenuation of striatal tyrosine hydroxylase protein loss. Seven days after 6-hydroxydopamine lesion, reactive astrocytosis was observed in the striatum, as determined by increases in expression of glial fibrillary acidic protein, however the glutamate transporter, GLT-1, which is also expressed in astrocytes was not regulated by the lesion. Conclusions The results confirm that riluzole is a neuroprotective agent in a rodent model of parkinson’s disease. Riluzole administration did not regulate GLT-1 levels but significantly reduced GFAP levels, in the lesioned striatum. Riluzole suppression of reactive astrocytosis is an intriguing finding which might contribute to the neuroprotective effects of this drug.
Resumo:
Key point summary • Cerebellar ataxias are progressive debilitating diseases with no known treatment and are associated with defective motor function and, in particular, abnormalities to Purkinje cells. • Mutant mice with deficits in Ca2+ channel auxiliary α2δ-2 subunits are used as models of cerebellar ataxia. • Our data in the du2J mouse model shows an association between the ataxic phenotype exhibited by homozygous du2J/du2J mice and increased irregularity of Purkinje cell firing. • We show that both heterozygous +/du2J and homozygous du2J/du2J mice completely lack the strong presynaptic modulation of neuronal firing by cannabinoid CB1 receptors which is exhibited by litter-matched control mice. • These results show that the du2J ataxia model is associated with deficits in CB1 receptor signalling in the cerebellar cortex, putatively linked with compromised Ca2+ channel activity due to reduced α2δ-2 subunit expression. Knowledge of such deficits may help design therapeutic agents to combat ataxias. Abstract Cerebellar ataxias are a group of progressive, debilitating diseases often associated with abnormal Purkinje cell (PC) firing and/or degeneration. Many animal models of cerebellar ataxia display abnormalities in Ca2+ channel function. The ‘ducky’ du2J mouse model of ataxia and absence epilepsy represents a clean knock-out of the auxiliary Ca2+ channel subunit, α2δ-2, and has been associated with deficient Ca2+ channel function in the cerebellar cortex. Here, we investigate effects of du2J mutation on PC layer (PCL) and granule cell (GC) layer (GCL) neuronal spiking activity and, also, inhibitory neurotransmission at interneurone-Purkinje cell(IN-PC) synapses. Increased neuronal firing irregularity was seen in the PCL and, to a less marked extent, in the GCL in du2J/du2J, but not +/du2J, mice; these data suggest that the ataxic phenotype is associated with lack of precision of PC firing, that may also impinge on GC activity and requires expression of two du2J alleles to manifest fully. du2J mutation had no clear effect on spontaneous inhibitory postsynaptic current (sIPSC) frequency at IN-PC synapses, but was associated with increased sIPSC amplitudes. du2J mutation ablated cannabinoid CB1 receptor (CB1R)-mediated modulation of spontaneous neuronal spike firing and CB1Rmediated presynaptic inhibition of synaptic transmission at IN-PC synapses in both +/du2J and du2J/du2J mutants; effects that occurred in the absence of changes in CB1R expression. These results demonstrate that the du2J ataxia model is associated with deficient CB1R signalling in the cerebellar cortex, putatively linked with compromised Ca2+ channel activity and the ataxic phenotype.
Resumo:
Schwann cells (SCs) are the supporting cells of the peripheral nervous system and originate from the neural crest. They play a unique role in the regeneration of injured peripheral nerves and have themselves a highly unstable phenotype as demonstrated by their unexpectedly broad differentiation potential. Thus, SCs can be considered as dormant, multipotent neural crest-derived progenitors or stem cells. Upon injury they de-differentiate via cellular reprogramming, re-enter the cell cycle and participate in the regeneration of the nerve. Here we describe a protocol for efficient generation of neurospheres from intact adult rat and murine sciatic nerve without the need of experimental in vivo pre-degeneration of the nerve prior to Schwann cell isolation. After isolation and removal of the connective tissue, the nerves are initially plated on poly-D-lysine coated cell culture plates followed by migration of the cells up to 80% confluence and a subsequent switch to serum-free medium leading to formation of multipotent neurospheres. In this context, migration of SCs from the isolated nerve, followed by serum-free cultivation of isolated SCs as neurospheres mimics the injury and reprograms fully differentiated SCs into a multipotent, neural crest-derived stem cell phenotype. This protocol allows reproducible generation of multipotent Schwann cell-derived neurospheres from sciatic nerve through cellular reprogramming by culture, potentially marking a starting point for future detailed investigations of the de-differentiation process.
Resumo:
Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized in the brain by the formation of amyloid-beta (Aβ)-containing plaques and neurofibrillary tangles containing the microtubule-associated protein tau. Neuroinflammation is another feature of AD and astrocytes are receiving increasing attention as key contributors. Although some progress has been made, the molecular mechanisms underlying the pathophysiology of AD remain unclear. Interestingly, some of the main proteins involved in AD, including amyloid precursor protein (APP) and tau, have recently been shown to be SUMOylated. The post-translational modification by SUMO (small ubiquitin-like modifier) has been shown to regulate APP and tau and may modulate other proteins implicated in AD. Here we present an overview of recent studies suggesting that protein SUMOylation might be involved in the underlying pathogenic mechanisms of AD and discuss how this could be exploited for therapeutic intervention.
Resumo:
mdx mice are believed to be virtually free from neuromuscular symptoms, despite the presence of a degenerative/regenerative process that involves all skeletal muscles. We analyzed both the spontaneous motility and treadmill motor activity of mdx mice aged 15 days to 6 months. Our results indicate that there is an early period, between the end of the second and up to the fifth week of life, when mdx mice experience extreme weakness. After this critical period, both spontaneous motility and endurance of mdx mice, although lower than those of controls, do not show statistically significant differences up to 6 months of age. We also carried out a detailed histological analysis of proximal and distal muscle groups in mdx mice during this early critical motility period. The occurrence of extensive necrosis followed by regeneration and involving proximal muscles before distal ones was documented in mice as young as 16-17 days of age and reached a peak at day 18. We conclude that dystrophin deficiency induces muscle degeneration and significant weakness in mdx mice, but only in an early period. Later on, during development, mdx mice adapt to the lack of this protein and do not show detectable in vivo functional muscle impairment up to 6 months of age.
Resumo:
Cerebellar ataxias represent a spectrum of disorders which are, however, linked by common symptoms of motor incoordination and are typically associated with deficient in Purkinje cell firing activity and, often, degeneration. Cerebellar ataxias currently lack a curative agent. The endocannabinoid (eCB) system includes eCB compounds and their associated metabolic enzymes, together with cannabinoid receptors, predominantly the cannabinoid CB1 receptor (CB1R) in the cerebellum; activation of this system in the cerebellar cortex is associated with deficits in motor coordination characteristic of ataxia, effects which can be prevented by CB1R antagonists. Of further interest are various findings that CB1R deficits may also induce a progressive ataxic phenotype. Together these studies suggest that motor coordination is reliant on maintaining the correct balance in eCB system signalling. Recent work also demonstrates deficient cannabinoid signalling in the mouse ‘ducky2J’ model of ataxia. In light of these points, the potential mechanisms whereby cannabinoids may modulate the eCB system to ameliorate dysfunction associated with cerebellar ataxias are considered.
Resumo:
Limb-girdle muscular dystrophies are a heterogeneous group of disorders characterized by progressive degeneration of skeletal muscle caused by the absence or deficiency of muscle proteins. The murine model of Limb-Girdle Muscular Dystrophy 2B, the SJL mice, carries a deletion in the dysferlin gene. Functionally, this mouse model shows discrete muscle weakness, starting at the age of 4-6 weeks. The possibility to restore the expression of the defective protein and improve muscular performance by cell therapy is a promising approach for the future treatment of progressive muscular dystrophies (PMD). We and others have recently shown that human adipose multipotent mesenchymal stromal cells (hASCs) can differentiate into skeletal muscle when in contact with dystrophic muscle cells in vitro and in vivo. Umbilical cord tissue and adipose tissue are known rich sources of multipotent mesenchymal stromal cells (MSCs), widely used for cell-based therapy studies. The main objective of the present study is to evaluate if MSCs from these two different sources have the same potential to reach and differentiate in muscle cells in vivo or if this capability is influenced by the niche from where they were obtained. In order to address this question we injected human derived umbilical cord tissue MSCs (hUCT MSCs) into the caudal vein of SJL mice with the same protocol previously used for hASCs; we evaluated the ability of these cells to engraft into recipient dystrophic muscle after systemic delivery, to express human muscle proteins in the dystrophic host and their effect in functional performance. These results are of great interest for future therapeutic application.