908 resultados para nearest-neighbour
Resumo:
The incorporation of modified nucleotides into ribonucleic acids (RNAs) is important for their structure and proper function. These modifications are inserted by distinct catalytic macromolecules one of them being Dnmt2. It methylates the Cytidine (C) at position 38 in tRNA to 5-methylcytidine (m5C). Dnmt2 has been a paradigm in this respect, because all of its nearest neighbors in evolution are DNA-cytosine C5-methyltransferases and methylate DNA, while its (own) DNA methyltransferase activity is the subject of controversial reports with rates varying between zero and very weak. This work determines whether the biochemical potential for DNA methylation is present in the enzyme. It was discovered that DNA fragments, when presented as covalent RNA:DNA hybrids in the structural context of a tRNA, can be more efficiently methylated than the corresponding natural tRNA substrate. Additional minor deviations from a native tRNA structure that were seen to be tolerated by Dnmt2 were used for a stepwise development of a composite system of guide RNAs that enable the enzyme to perform cytidine methylation on single stranded DNA in vitro. Furthermore, a proof-of-principle is presented for utilizing the S-adenosyl methionine-analog cofactor SeAdoYn with Dnmt2 to search for new possible substrates in a SELEX-like approach.rnIn innate immunity, nucleic acids can function as pathogen associated molecular patterns (PAMPs) recognized by pattern recognition receptors (PRRs). The modification pattern of RNA is the discriminating factor for toll-like receptor 7 (TLR7) to distinguish between self and non-self RNA of invading pathogens. It was found that a 2'-O-methylated guanosine (Gm) at position18, naturally occurring at this position in some tRNAs, antagonizes recognition by TLR7. In the second part of this work it is pointed out, that recognition extends to the next downstream nucleotide and the effectively recognized molecular detail is actually a methylated dinucleotide. The immune silencing effect of the ribose methylation is most pronounced if the dinucleotide motif is composed of purin nucleobases whereas pyrimidines diminish the effect. Similar results were obtained when the Gm modification was transposed into other tRNA domains. Point mutations abolishing base pairings important for a proper tertiary structure had no effect on the immune stimulatory potential of a Gm modified tRNA. Taken together these results suggest a processive type of RNA inspection by TLR7.rn
Resumo:
L'attività di tesi è stata svolta presso la divisione System Ceramics della società System Group S.p.A. di Fiorano Modenese (MO) che si occupa dello sviluppo di soluzioni per l'industria ceramica, tra cui la decorazione delle piastrelle. Tipicamente nelle industrie ceramiche la movimentazione dei pezzi è effettuata tramite nastro trasportatore e durante il trasporto i pezzi possono subire leggeri movimenti. Se il pezzo non viene allineato alla stampante prima della fase di decorazione la stampa risulta disallineata e vi possono essere alcune zone non stampate lungo i bordi del pezzo. Perciò prima di procedere con la decorazione è fondamentale correggere il disallineamento. La soluzione più comune è installare delle guide all'ingresso del sistema di decorazione. Oltre a non consentire un’alta precisione, questa soluzione si dimostra inadatta nel caso la decorazione venga applicata in fasi successive da stampanti diverse. Il reparto di ricerca e sviluppo di System Ceramics ha quindi ideato una soluzione diversa e innovativa seguendo l'approccio inverso: allineare la grafica via software a ogni pezzo in base alla sua disposizione, invece che intervenire fisicamente modificandone la posizione. Il nuovo processo di stampa basato sull'allineamento software della grafica consiste nel ricavare inizialmente la disposizione di ogni piastrella utilizzando un sistema di visione artificiale posizionato sul nastro prima della stampante. Successivamente la grafica viene elaborata in base alla disposizione del pezzo ed applicata una volta che il pezzo arriva presso la zona di stampa. L'attività di tesi si è focalizzata sulla fase di rotazione della grafica ed è consistita nello studio e nell’ottimizzazione del prototipo di applicazione esistente al fine di ridurne i tempi di esecuzione. Il prototipo infatti, sebbene funzionante, ha un tempo di esecuzione così elevato da risultare incompatibile con la velocità di produzione adottata dalle industrie ceramiche.
Resumo:
Alpine snowbeds are habitats where the major limiting factors for plant growth are herbivory and a small time window for growth due to late snowmelt. Despite these limitations, snowbed vegetation usually forms a dense carpet of palatable plants due to favourable abiotic conditions for plant growth within the short growing season. These environmental characteristics make snowbeds particularly interesting to study the interplay of facilitation and competition. We hypothesised an interplay between resource competition and facilitation against herbivory. Further, we investigated whether these predicted neighbour effects were species-specific and/or dependent on ontogeny, and whether the balance of positive and negative plant–plant interactions shifted along a snowmelt gradient. We determined the neighbour effects by means of neighbour removal experiments along the snowmelt gradient, and linear mixed model analyses. The results showed that the effects of neighbour removal were weak but generally consistent among species and snowmelt dates, and depended on whether biomass production or survival was considered. Higher total biomass and increased fruiting in removal plots indicated that plants competed for nutrients, water, and light, thereby supporting the hypothesis of prevailing competition for resources in snowbeds. However, the presence of neighbours reduced herbivory and thereby also facilitated survival. For plant growth the facilitative effects against herbivores in snowbeds counterbalanced competition for resources, leading to a weak negative net effect. Overall the neighbour effects were not species-specific and did not change with snowmelt date. Our finding of counterbalancing effects of competition and facilitation within a plant community is of special theoretical value for species distribution models and can explain the success of models that give primary importance to abiotic factors and tend to overlook interrelations between biotic and abiotic effects on plants.
Resumo:
Loss of small herbaria is an unfortunate global trend, and initiation of new collections at small academic institutions is an increasingly rare occurrence. In 2006, a new herbarium was established at the State University of New York College at Plattsburgh. The PLAT herbarium has since grown to more than 7,000 specimens, many of them representative of the flora of northeastern New York (especially Clinton County). Previous to 2006, this region was without a recognized herbarium, the nearest in-state collections being more than 150 miles away. Although botanists have previously worked in the region, relatively few plant species were recorded for Clinton County by the New York Flora Atlas – a resource providing species distribution records based on specimens accessioned in herbarium collections. Given the dearth of available distribution data for Clinton County (including the eastern Adirondack Mountains and the western Lake Champlain valley), this project sought to provide records of previously unreported species by comparing NY Flora Atlas maps with current holdings. 203 species will now be added to the NY Flora Atlas for Clinton County, roughly half of those considered exotic. This exercise has amplified the importance of supporting and maintaining small regional herbaria as repositories of valuable biodiversity information. Likewise, this project also highlights the enduring value of training in floristics and taxonomy.
Resumo:
Background Previous studies on childhood cancer and nuclear power plants (NPPs) produced conflicting results. We used a cohort approach to examine whether residence near NPPs was associated with leukaemia or any childhood cancer in Switzerland. Methods We computed person-years at risk for children aged 0–15 years born in Switzerland from 1985 to 2009, based on the Swiss censuses 1990 and 2000 and identified cancer cases from the Swiss Childhood Cancer Registry. We geo-coded place of residence at birth and calculated incidence rate ratios (IRRs) with 95% confidence intervals (CIs) comparing the risk of cancer in children born <5 km, 5–10 km and 10–15 km from the nearest NPP with children born >15 km away, using Poisson regression models. Results We included 2925 children diagnosed with cancer during 21 117 524 person-years of follow-up; 953 (32.6%) had leukaemia. Eight and 12 children diagnosed with leukaemia at ages 0–4 and 0–15 years, and 18 and 31 children diagnosed with any cancer were born <5 km from a NPP. Compared with children born >15 km away, the IRRs (95% CI) for leukaemia in 0–4 and 0–15 year olds were 1.20 (0.60–2.41) and 1.05 (0.60–1.86), respectively. For any cancer, corresponding IRRs were 0.97 (0.61–1.54) and 0.89 (0.63–1.27). There was no evidence of a dose–response relationship with distance (P > 0.30). Results were similar for residence at diagnosis and at birth, and when adjusted for potential confounders. Results from sensitivity analyses were consistent with main results. Conclusions This nationwide cohort study found little evidence of an association between residence near NPPs and the risk of leukaemia or any childhood cancer.
Resumo:
A series of oligodeoxyribonucleotides and oligoribonucleotides containing single and multiple tricyclo(tc)-nucleosides in various arrangements were prepared and the thermal and thermodynamic transition profiles of duplexes with complementary DNA and RNA evaluated. Tc-residues aligned in a non-continuous fashion in an RNA strand significantly decrease affinity to complementary RNA and DNA, mostly as a consequence of a loss of pairing enthalpy DeltaH. Arranging the tc-residues in a continuous fashion rescues T(m) and leads to higher DNA and RNA affinity. Substitution of oligodeoxyribonucleotides in the same way causes much less differences in T(m) when paired to complementary DNA and leads to substantial increases in T(m) when paired to complementary RNA. CD-spectroscopic investigations in combination with molecular dynamics simulations of duplexes with single modifications show that tc-residues in the RNA backbone distinctly influence the conformation of the neighboring nucleotides forcing them into higher energy conformations, while tc-residues in the DNA backbone seem to have negligible influence on the nearest neighbor conformations. These results rationalize the observed affinity differences and are of relevance for the design of tc-DNA containing oligonucleotides for applications in antisense or RNAi therapy.
Resumo:
Dimensional modeling, GT-Power in particular, has been used for two related purposes-to quantify and understand the inaccuracies of transient engine flow estimates that cause transient smoke spikes and to improve empirical models of opacity or particulate matter used for engine calibration. It has been proposed by dimensional modeling that exhaust gas recirculation flow rate was significantly underestimated and volumetric efficiency was overestimated by the electronic control module during the turbocharger lag period of an electronically controlled heavy duty diesel engine. Factoring in cylinder-to-cylinder variation, it has been shown that the electronic control module estimated fuel-Oxygen ratio was lower than actual by up to 35% during the turbocharger lag period but within 2% of actual elsewhere, thus hindering fuel-Oxygen ratio limit-based smoke control. The dimensional modeling of transient flow was enabled with a new method of simulating transient data in which the manifold pressures and exhaust gas recirculation system flow resistance, characterized as a function of exhaust gas recirculation valve position at each measured transient data point, were replicated by quasi-static or transient simulation to predict engine flows. Dimensional modeling was also used to transform the engine operating parameter model input space to a more fundamental lower dimensional space so that a nearest neighbor approach could be used to predict smoke emissions. This new approach, intended for engine calibration and control modeling, was termed the "nonparametric reduced dimensionality" approach. It was used to predict federal test procedure cumulative particulate matter within 7% of measured value, based solely on steady-state training data. Very little correlation between the model inputs in the transformed space was observed as compared to the engine operating parameter space. This more uniform, smaller, shrunken model input space might explain how the nonparametric reduced dimensionality approach model could successfully predict federal test procedure emissions when roughly 40% of all transient points were classified as outliers as per the steady-state training data.
Resumo:
Model-based calibration of steady-state engine operation is commonly performed with highly parameterized empirical models that are accurate but not very robust, particularly when predicting highly nonlinear responses such as diesel smoke emissions. To address this problem, and to boost the accuracy of more robust non-parametric methods to the same level, GT-Power was used to transform the empirical model input space into multiple input spaces that simplified the input-output relationship and improved the accuracy and robustness of smoke predictions made by three commonly used empirical modeling methods: Multivariate Regression, Neural Networks and the k-Nearest Neighbor method. The availability of multiple input spaces allowed the development of two committee techniques: a 'Simple Committee' technique that used averaged predictions from a set of 10 pre-selected input spaces chosen by the training data and the "Minimum Variance Committee" technique where the input spaces for each prediction were chosen on the basis of disagreement between the three modeling methods. This latter technique equalized the performance of the three modeling methods. The successively increasing improvements resulting from the use of a single best transformed input space (Best Combination Technique), Simple Committee Technique and Minimum Variance Committee Technique were verified with hypothesis testing. The transformed input spaces were also shown to improve outlier detection and to improve k-Nearest Neighbor performance when predicting dynamic emissions with steady-state training data. An unexpected finding was that the benefits of input space transformation were unaffected by changes in the hardware or the calibration of the underlying GT-Power model.
Resumo:
Genetic characterization helps to assure breed integrity and to assign individuals to defined populations. The objective of this study was to characterize genetic diversity in six horse breeds and to analyse the population structure of the Franches-Montagnes breed, especially with regard to the degree of introgression with Warmblood. A total of 402 alleles from 50 microsatellite loci were used. The average number of alleles per locus was significantly lower in Thoroughbreds and Arabians. Average heterozygosities between breeds ranged from 0.61 to 0.72. The overall average of the coefficient of gene differentiation because of breed differences was 0.100, with a range of 0.036-0.263. No significant correlation was found between this parameter and the number of alleles per locus. An increase in the number of homozygous loci with increasing inbreeding could not be shown for the Franches-Montagnes horses. The proportion of shared alleles, combined with the neighbour-joining method, defined clusters for Icelandic Horse, Comtois, Arabians and Franches-Montagnes. A more disparate clustering could be seen for European Warmbloods and Thoroughbreds, presumably from frequent grading-up of Warmbloods with Thoroughbreds. Grading-up effects were also observed when Bayesian and Monte Carlo resampling approaches were used for individual assignment to a given population. Individual breed assignments to defined reference populations will be very difficult when introgression has occurred. The Bayesian approach within the Franches-Montagnes breed differentiated individuals with varied proportions of Warmblood.
Resumo:
With recent advances in mass spectrometry techniques, it is now possible to investigate proteins over a wide range of molecular weights in small biological specimens. This advance has generated data-analytic challenges in proteomics, similar to those created by microarray technologies in genetics, namely, discovery of "signature" protein profiles specific to each pathologic state (e.g., normal vs. cancer) or differential profiles between experimental conditions (e.g., treated by a drug of interest vs. untreated) from high-dimensional data. We propose a data analytic strategy for discovering protein biomarkers based on such high-dimensional mass-spectrometry data. A real biomarker-discovery project on prostate cancer is taken as a concrete example throughout the paper: the project aims to identify proteins in serum that distinguish cancer, benign hyperplasia, and normal states of prostate using the Surface Enhanced Laser Desorption/Ionization (SELDI) technology, a recently developed mass spectrometry technique. Our data analytic strategy takes properties of the SELDI mass-spectrometer into account: the SELDI output of a specimen contains about 48,000 (x, y) points where x is the protein mass divided by the number of charges introduced by ionization and y is the protein intensity of the corresponding mass per charge value, x, in that specimen. Given high coefficients of variation and other characteristics of protein intensity measures (y values), we reduce the measures of protein intensities to a set of binary variables that indicate peaks in the y-axis direction in the nearest neighborhoods of each mass per charge point in the x-axis direction. We then account for a shifting (measurement error) problem of the x-axis in SELDI output. After these pre-analysis processing of data, we combine the binary predictors to generate classification rules for cancer, benign hyperplasia, and normal states of prostate. Our approach is to apply the boosting algorithm to select binary predictors and construct a summary classifier. We empirically evaluate sensitivity and specificity of the resulting summary classifiers with a test dataset that is independent from the training dataset used to construct the summary classifiers. The proposed method performed nearly perfectly in distinguishing cancer and benign hyperplasia from normal. In the classification of cancer vs. benign hyperplasia, however, an appreciable proportion of the benign specimens were classified incorrectly as cancer. We discuss practical issues associated with our proposed approach to the analysis of SELDI output and its application in cancer biomarker discovery.
Resumo:
Reconstruction of patient-specific 3D bone surface from 2D calibrated fluoroscopic images and a point distribution model is discussed. We present a 2D/3D reconstruction scheme combining statistical extrapolation and regularized shape deformation with an iterative image-to-model correspondence establishing algorithm, and show its application to reconstruct the surface of proximal femur. The image-to-model correspondence is established using a non-rigid 2D point matching process, which iteratively uses a symmetric injective nearest-neighbor mapping operator and 2D thin-plate splines based deformation to find a fraction of best matched 2D point pairs between features detected from the fluoroscopic images and those extracted from the 3D model. The obtained 2D point pairs are then used to set up a set of 3D point pairs such that we turn a 2D/3D reconstruction problem to a 3D/3D one. We designed and conducted experiments on 11 cadaveric femurs to validate the present reconstruction scheme. An average mean reconstruction error of 1.2 mm was found when two fluoroscopic images were used for each bone. It decreased to 1.0 mm when three fluoroscopic images were used.
Resumo:
Maderas volcano is a small, andesitic stratovolcano located on the island of Ometepe, in Lake Nicaragua, Nicaragua with no record of historic activity. Twenty-one samples were collected from lava flows from Maderas in 2010. Selected samples were analyzed for whole-rock geochemical data using ICP-AES and/or were dated using the 40Ar/39Ar method. The results of these analyses were combined with previously collected data from Maderas as well as field observations to determine the eruptive history of the volcano and create a geologic map. The results of the geochemical analyses indicate that Maderas is a typical Central American andesitic volcano similar to other volcanoes in Nicaragua and Costa Rica and to its nearest neighbor, Concepción volcano. It is different from Concepción in one important way – higher incompatible elements. Determined age dates range from 176.8 ± 6.1 ka to 70.5 ± 6.1 ka. Based on these ages and the geomorphology of the volcano which is characterized by a bisecting graben, it is proposed that Maderas experienced two clear generations of development with three separate phases of volcanism: initial build-up of the older cone, pre-graben lava flows, and post-graben lava flows. The ages also indicate that Maderas is markedly older than Concepción which is historically active. Results were also analyzed regarding geologic hazards. The 40Ar/39Ar ages indicate that Maderas has likely been inactive for tens of thousands of years and the risk of future volcanic eruptions is low. However, earthquake, lahar and landslide hazards exist for the communities around the volcano. The steep slopes of the eroded older cone are the most likely source of landslide and lahar hazards.
Resumo:
Measuring shallow seismic sources provides a way to reveal processes that cannot be directly observed, but the correct interpretation and value of these signals depend on the ability to distinguish source from propagation effects. Furthermore, seismic signals produced by a resonating source can look almost identical to those produced by impulsive sources, but modified along the path. Distinguishing these two phenomena can be accomplished by examining the wavefield with small aperture arrays or by recording seismicity near to the source when possible. We examine source and path effects in two different environments: Bering Glacier, Alaska and Villarrica Volcano, Chile. Using three 3-element seismic arrays near the terminus of the Bering Glacier, we have identified and located both terminus calving and iceberg breakup events. We show that automated array analysis provided a robust way to locate icequake events using P waves. This analysis also showed that arrivals within the long-period codas were incoherent within the small aperture arrays, demonstrating that these codas previously attributed to crack resonance were in fact a result of a complicated path rather than a source effect. At Villarrica Volcano, seismometers deployed from near the vent to ~10 km revealed that a several cycle long-period source signal recorded at the vent appeared elongated in the far-field. We used data collected from the stations nearest to the vent to invert for the repetitive seismic source, and found it corresponded to a shallow force within the lava lake oriented N75°E and dipping 7° from horizontal. We also used this repetitive signal to search the data for additional seismic and infrasonic properties which included calculating seismic-acoustic delay times, volcano acoustic-seismic ratios and energies, event frequency, and real-time seismic amplitude measurements. These calculations revealed lava lake level and activity fluctuations consistent with lava lake level changes inferred from the persistent infrasonic tremor.
Resumo:
Obesity is becoming an epidemic phenomenon in most developed countries. The fundamental cause of obesity and overweight is an energy imbalance between calories consumed and calories expended. It is essential to monitor everyday food intake for obesity prevention and management. Existing dietary assessment methods usually require manually recording and recall of food types and portions. Accuracy of the results largely relies on many uncertain factors such as user's memory, food knowledge, and portion estimations. As a result, the accuracy is often compromised. Accurate and convenient dietary assessment methods are still blank and needed in both population and research societies. In this thesis, an automatic food intake assessment method using cameras, inertial measurement units (IMUs) on smart phones was developed to help people foster a healthy life style. With this method, users use their smart phones before and after a meal to capture images or videos around the meal. The smart phone will recognize food items and calculate the volume of the food consumed and provide the results to users. The technical objective is to explore the feasibility of image based food recognition and image based volume estimation. This thesis comprises five publications that address four specific goals of this work: (1) to develop a prototype system with existing methods to review the literature methods, find their drawbacks and explore the feasibility to develop novel methods; (2) based on the prototype system, to investigate new food classification methods to improve the recognition accuracy to a field application level; (3) to design indexing methods for large-scale image database to facilitate the development of new food image recognition and retrieval algorithms; (4) to develop novel convenient and accurate food volume estimation methods using only smart phones with cameras and IMUs. A prototype system was implemented to review existing methods. Image feature detector and descriptor were developed and a nearest neighbor classifier were implemented to classify food items. A reedit card marker method was introduced for metric scale 3D reconstruction and volume calculation. To increase recognition accuracy, novel multi-view food recognition algorithms were developed to recognize regular shape food items. To further increase the accuracy and make the algorithm applicable to arbitrary food items, new food features, new classifiers were designed. The efficiency of the algorithm was increased by means of developing novel image indexing method in large-scale image database. Finally, the volume calculation was enhanced through reducing the marker and introducing IMUs. Sensor fusion technique to combine measurements from cameras and IMUs were explored to infer the metric scale of the 3D model as well as reduce noises from these sensors.
Resumo:
The Red Lodge and Silver Star chromite deposits of Montana have stimulated much interest during periods of war. The Red Lodge deposit is 25 miles southwest of Red Lodge which is also the nearest railroad point. Several workings are scattered throughout the area, exposing lense-like ore bodies averaging 33% chrome oxide. Silver Star is a much smaller deposit 5 miles west of Silver Star, Montana, which is its nearest railroad point. Lenses of chromite are exposed by pits and trenches, which average approximately 36% chromic oxide.