969 resultados para muscles
Resumo:
The major processes discussed below are protein turnover (degradation and synthesis), degradation into urea, or conversion into glucose (gluconeogenesis, Figure 1). Daily protein turnover is a dynamic process characterized by a double flux of amino acids: the amino acids released by endogenous (body) protein breakdown can be reutilized and reconverted to protein synthesis, with very little loss. Daily rates of protein turnover in humans (300 to 400 g per day) are largely in excess of the level of protein intake (50 to 80 g per day). A fast growing rate, as in premature babies or in children recovering from malnutrition, leads to a high protein turnover rate and a high protein and energy requirement. Protein metabolism (synthesis and breakdown) is an energy-requiring process, dependent upon endogenous ATP supply. The contribution made by whole-body protein turnover to the resting metabolic rate is important: it represents about 20 % in adults and more in growing children. Metabolism of proteins cannot be disconnected from that of energy since energy balance influences net protein utilization, and since protein intake has an important effect on postprandial thermogenesis - more important than that of fats or carbohydrates. The metabolic need for amino acids is essentially to maintain stores of endogenous tissue proteins within an appropriate range, allowing protein homeostasis to be maintained. Thanks to a dynamic, free amino acid pool, this demand for amino acids can be continuously supplied. The size of the free amino acid pool remains limited and is regulated within narrow limits. The supply of amino acids to cover physiological needs can be derived from 3 sources: 1. Exogenous proteins that release amino acids after digestion and absorption 2. Tissue protein breakdown during protein turnover 3. De novo synthesis, including amino acids (as well as ammonia) derived from the process of urea salvage, following hydrolysis and microflora metabolism in the hind gut. When protein intake surpasses the physiological needs of amino acids, the excess amino acids are disposed of by three major processes: 1. Increased oxidation, with terminal end products such as CO₂ and ammonia 2. Enhanced ureagenesis i. e. synthesis of urea linked to protein oxidation eliminates the nitrogen radical 3. Gluconeogenesis, i. e. de novo synthesis of glucose. Most of the amino groups of the excess amino acids are converted into urea through the urea cycle, whereas their carbon skeletons are transformed into other intermediates, mostly glucose. This is one of the mechanisms, essential for life, developed by the body to maintain blood glucose within a narrow range, (i. e. glucose homeostasis). It includes the process of gluconeogenesis, i. e. de novo synthesis of glucose from non-glycogenic precursors; in particular certain specific amino acids (for example, alanine), as well as glycerol (derived from fat breakdown) and lactate (derived from muscles). The gluconeogenetic pathway progressively takes over when the supply of glucose from exogenous or endogenous sources (glycogenolysis) becomes insufficient. This process becomes vital during periods of metabolic stress, such as starvation.
Resumo:
In mammals, the presence of excitable cells in muscles, heart and nervous system is crucial and allows fast conduction of numerous biological information over long distances through the generation of action potentials (AP). Voltage-gated sodium channels (Navs) are key players in the generation and propagation of AP as they are responsible for the rising phase of the AP. Navs are heteromeric proteins composed of a large pore-forming a-subunit (Nav) and smaller ß-auxiliary subunits. There are ten genes encoding for Navl.l to Nav1.9 and NaX channels, each possessing its own specific biophysical properties. The excitable cells express differential combinations of Navs isoforms, generating a distinct electrophysiological signature. Noteworthy, only when anchored at the membrane are Navs functional and are participating in sodium conductance. In addition to the intrinsic properties of Navs, numerous regulatory proteins influence the sodium current. Some proteins will enhance stabilization of membrane Navs while others will favour internalization. Maintaining equilibrium between the two is of crucial importance for controlling cellular excitability. The E3 ubiquitin ligase Nedd4-2 is a well-characterized enzyme that negatively regulates the turnover of many membrane proteins including Navs. On the other hand, ß-subunits are known since long to stabilize Navs membrane anchoring. Peripheral neuropathic pain is a disabling condition resulting from nerve injury. It is characterized by the dysregulation of Navs expressed in dorsal root ganglion (DRG) sensory neurons as highlighted in different animal models of neuropathic pain. Among Navs, Nav1.7 and Nav1.8 are abundantly and specifically expressed in DRG sensory neurons and have been recurrently incriminated in nociception and neuropathic pain development. Using the spared nerve injury (SNI) experimental model of neuropathic pain in mice, I observed a specific reduction of Nedd4-2 in DRG sensory neurons. This decrease subsequently led to an upregulation of Nav1.7 and Nav1.8 protein and current, in the axon and the DRG neurons, respectively, and was sufficient to generate neuropathic pain-associated hyperexcitability. Knocking out Nedd4-2 specifically in nociceptive neurons led to the same increase of Nav1.7 and Nav1.8 concomitantly with an increased thermal sensitivity in mice. Conversely, rescuing Nedd4-2 downregulation using viral vector transfer attenuated neuropathic pain mechanical hypersensitivity. This study demonstrates the significant role of Nedd4-2 in regulating cellular excitability in vivo and its involvement in neuropathic pain development. The role of ß-subunits in neuropathic pain was already demonstrated in our research group. Because of their stabilization role, the increase of ßl, ß2 and ß3 subunits in DRGs after SNI led to increased Navs anchored at the membrane. Here, I report a novel mechanism of regulation of a-subunits by ß- subunits in vitro; ßl and ß3-subunits modulate the glycosylation pattern of Nav1.7, which might account for stabilization of its membrane expression. This opens new perspectives for investigation Navs state of glycosylation in ß-subunits dependent diseases, such as in neuropathic pain. - Chez les mammifères, la présence de cellules excitables dans les muscles, le coeur et le système nerveux est cruciale; elle permet la conduction rapide de nombreuses informations sur de longues distances grâce à la génération de potentiels d'action (PA). Les canaux sodiques voltage-dépendants (Navs) sont des participants importants dans la génération et la propagation des PA car ils sont responsables de la phase initiale de dépolarisation du PA. Les Navs sont des protéines hétéromériques composées d'une grande sous-unité a (formant le pore du canal) et de petites sous-unités ß accompagnatrices. Il existe dix gènes qui codent pour les canaux sodiques, du Nav 1.1 au Nav 1.9 ainsi que NaX, chacun possédant des propriétés biophysiques spécifiques. Les cellules excitables expriment différentes combinaisons des différents isoformes de Navs, qui engendrent une signature électrophysiologique distincte. Les Navs ne sont fonctionnels et ne participent à la conductibilité du Na+, que s'ils sont ancrés à la membrane plasmique. En plus des propriétés intrinsèques des Navs, de nombreuses protéines régulatrices influencent également le courant sodique. Certaines protéines vont favoriser l'ancrage et la stabilisation des Navs exprimés à la membrane, alors que d'autres vont plutôt favoriser leur internalisation. Maintenir l'équilibre des deux processus est crucial pour contrôler l'excitabilité cellulaire. Dans ce contexte, Nedd4-2, de la famille des E3 ubiquitin ligase, est une enzyme bien caractérisée qui régule l'internalisation de nombreuses protéines, notamment celle des Navs. Inversement, les sous-unités ß sont connues depuis longtemps pour stabiliser l'ancrage des Navs à la membrane. La douleur neuropathique périphérique est une condition débilitante résultant d'une atteinte à un nerf. Elle est caractérisée par la dérégulation des Navs exprimés dans les neurones sensoriels du ganglion spinal (DRG). Ceci a été démontré à de multiples occasions dans divers modèles animaux de douleur neuropathique. Parmi les Navs, Nav1.7 et Nav1.8 sont abondamment et spécifiquement exprimés dans les neurones sensoriels des DRG et ont été impliqués de façon récurrente dans le développement de la douleur neuropathique. En utilisant le modèle animal de douleur neuropathique d'épargne du nerf sural (spared nerve injury, SNI) chez la souris, j'ai observé une réduction spécifique des Nedd4-2 dans les neurones sensoriels du DRG. Cette diminution avait pour conséquence l'augmentation de l'expression des protéines et des courants de Nav 1.7 et Nav 1.8, respectivement dans l'axone et les neurones du DRG, et était donc suffisante pour créer l'hyperexcitabilité associée à la douleur neuropathique. L'invalidation pour le gène codant pour Nedd4-2 dans une lignée de souris génétiquement modifiées a conduit à de similaires augmentations de Nav1.7 et Nav1.8, parallèlement à une augmentation à la sensibilité thermique. A l'opposé, rétablir une expression normale de Nedd4-2 en utilisant un vecteur viral a eu pour effet de contrecarrer le développement de l'hypersensibilité mécanique lié à ce modèle de douleur neuropathique. Cette étude démontre le rôle important de Nedd4-2 dans la régulation de l'excitabilité cellulaire in vivo et son implication dans le développement des douleurs neuropathiques. Le rôle des sous-unités ß dans les douleurs neuropathiques a déjà été démontré dans notre groupe de recherche. A cause de leur rôle stabilisateur, l'augmentation des sous-unités ßl, ß2 et ß3 dans les DRG après SNI, conduit à une augmentation des Navs ancrés à la membrane. Dans mon travail de thèse, j'ai observé un nouveau mécanisme de régulation des sous-unités a par les sous-unités ß in vitro. Les sous-unités ßl et ß3 régulent l'état de glycosylation du canal Nav1.7, et stabilisent son expression membranaire. Ceci ouvre de nouvelles perspectives dans l'investigation de l'état de glycosylation des Navs dans des maladies impliquant les sous-unités ß, notamment les douleurs neuropathiques.
Resumo:
Calbindin and calretinin are two homologous calcium-binding proteins that are expressed by subpopulations of primary sensory neurons. In the present work, we have studied the distribution of the neurons expressing calbindin and calretinin in dorsal root ganglia of the rat and their peripheral projections. Calbindin and calretinin immunoreactivities were expressed by subpopulations of large- and small-sized primary sensory neurons and colocalized in a majority of large-sized ones. The axons emerging from calbindin- or calretinin-immunoreactive neurons innervated muscle spindles, Pacini corpuscles and subepidermal lamellar corpuscles in the glabrous skin, formed palisades of lanceolate endings around hairs and vibrissae, and gave rise to intraepidermal nerve endings in the digital skin. Since most of these afferents are considered as rapidly adapting mechanoreceptors, it is concluded that calbindin- or calretinin-expressing neurons innervate particular mechanoreceptors that display physiological characteristics of rapid adaptation to stimuli.
Resumo:
The autosomal recessive forms of limb-girdle muscular dystrophies are encoded by at least five distinct genes. The work performed towards the identification of two of these is summarized in this report. This success illustrates the growing importance of genetics in modern nosology.
Resumo:
Twitch mouth pressure (Pmo,tw) during magnetic phrenic nerve stimulation and sniff nasal inspiratory pressure (SNIP) were recently proposed as alternative noninvasive methods for assessing inspiratory muscle strength. This study aimed to compare their reproducibility with maximal inspiratory pressure (MIP) in normal subjects. Ten healthy subjects were studied at functional residual capacity in semirecumbent position. Cervical magnetic phrenic nerve stimulation was performed during gentle expiration against an occlusion incorporating a small leak. Constancy of stimulation was controlled by recording diaphragmatic electromyogram. Within and between-session reproducibility of pressure were studied for Pmo,tw, SNIP, and MIP. The subjects were studied during a session of 10 manoeuvres repeated after 1 day and 1 month. The mean values were 16 cmH2O for Pmo,tw, 118 cmH2O for SNIP, and 115 cmH2O for MIP. For the three tests, the within subject variation was small in relation to between-subject variation, with the intraclass correlation coefficient ranging 0.79-0.90 for Pmo,tw, 0.85-0.92 for SNIP, and 0.88-0.92 for MIP. At 1 day interval, the coefficient of repeatability (2 SD of differences) was 3.6 cmH2O for Pmo,tw, 32 cmH2O for SNIP and 28 cmH2O for MIP. At 1 month interval, the coefficient of repeatability was 5.8 cmH2O for Pmo,tw, 23 cmH2O for SNIP and 21 cmH2O for MIP. We conclude that the within session reproducibility of the new tests twitch mouth pressure and sniff nasal inspiratory pressure is sufficient to be clinically useful. For sniff nasal inspiratory pressure, the between session reproducibility established after 1 day was maintained after 1 month. For twitch mouth pressure, the between session reproducibility declined slightly after 1 month. These characteristics should be considered when using these methods to follow an individual patient over time.
Resumo:
OBJECTIVE: To describe a new entity of congenital muscular dystrophies caused by de novo LMNA mutations. METHODS: Fifteen patients presenting with a myopathy of onset in the first year of life were subjected to neurological and genetic evaluation. Histopathological and immunohistochemical analyses were performed for all patients. RESULTS: The 15 patients presented with muscle weakness in the first year of life, and all had de novo heterozygous LMNA mutations. Three of them had severe early-onset disease, no motor development, and the rest experienced development of a "dropped head" syndrome phenotype. Despite variable severity, there was a consistent clinical pattern. Patients typically presented with selective axial weakness and wasting of the cervicoaxial muscles. Limb involvement was predominantly proximal in upper extremities and distal in lower extremities. Talipes feet and a rigid spine with thoracic lordosis developed early. Proximal contractures appeared later, most often in lower limbs, sparing the elbows. Ten children required ventilatory support, three continuously through tracheotomy. Cardiac arrhythmias were observed in four of the oldest patients but were symptomatic only in one. Creatine kinase levels were mild to moderately increased. Muscle biopsies showed dystrophic changes in nine children and nonspecific myopathic changes in the remaining. Markedly atrophic fibers were common, most often type 1, and a few patients showed positive inflammatory markers. INTERPRETATION: The LMNA mutations identified appear to correlate with a relatively severe phenotype. Our results further broaden the spectrum of laminopathies and define a new disease entity that we suggest is best classified as a congenital muscular dystrophy (LMNA-related congenital muscular dystrophy, or L-CMD).
Resumo:
OBJECTIVE: To evaluate the feasibility and effects of non-invasive pressure support ventilation (NIV) on the breathing pattern in infants developing respiratory failure after extubation. DESIGN: Prospective pilot clinical study; each patient served as their own control. SETTING: A nine-bed paediatric intensive care unit of a tertiary university hospital. PATIENTS: Six patients (median age 5 months, range 0.5-7 months; median weight 4.2 kg, range 3.8-5.1 kg) who developed respiratory failure after extubation. INTERVENTIONS: After a period of spontaneous breathing (SB), children who developed respiratory failure were treated with NIV. MEASUREMENTS AND RESULTS: Measurements included clinical dyspnoea score (DS), blood gases and oesophageal pressure recordings, which were analysed for respiratory rate (RR), oesophageal inspiratory pressure swing (dPes) and oesophageal pressure-time product (PTPes). All data were collected during both periods (SB and NIV). When comparing NIV with SB, DS was reduced by 44% (P < 0.001), RR by 32% (P < 0.001), dPes by 45% (P < 0.01) and PTPes by 57% (P < 0.001). A non-significant trend for decrease in PaCO(2) was observed. CONCLUSION: In these infants, non-invasive pressure support ventilation with turbine flow generator induced a reduction of breathing frequency, dPes and PTPes, indicating reduced load of the inspiratory muscles. NIV can be used with some benefits in infants with respiratory failure after extubation.
Resumo:
In subjects with normal lung mechanics, inspiratory muscle strength can be reliably and easily assessed by the sniff nasal inspiratory pressure (SNIP), which is the pressure measured in an occluded nostril during a maximal sniff performed through the contralateral nostril. The aim of this study was to assess the validity of the SNIP in patients with chronic obstructive pulmonary disease (COPD), where pressure transmission from alveoli to upper airways is likely to be dampened. Twenty eight patients with COPD were studied (mean forced expiratory volume in one second (FEV1) = 36% of predicted). The SNIP and the sniff oesophageal pressure (sniff Poes) were measured simultaneously during maximal sniffs, and were compared to the maximal inspiratory pressure obtained against an occlusion (MIP). All measurements were performed from functional residual capacity in the sitting position. The ratio SNIP/sniff Poes was 0.80, and did not correlate with the degree of airflow limitation. The ratio MIP/sniff Poes was 0.87, and the ratio SNIP/MIP was 0.97. Inspiratory muscle weakness, as defined by a low sniff Poes, was present in 17 of the 28 patients. A false diagnosis of weakness was made in eight patients when MIP was considered alone, in four when SNIP was considered alone, and in only three patients when MIP and SNIP were combined. We conclude that both the sniff nasal inspiratory pressure and the maximal inspiratory pressure moderately underestimate sniff oesophageal pressure in chronic obstructive pulmonary disease. Although suboptimal in this condition, the sniff nasal inspiratory pressure appears useful to complement the maximal inspiratory pressure for assessing inspiratory muscle strength in patients with chronic obstructive pulmonary disease.
Resumo:
ABSTRACT: INTRODUCTION: Hyperlactatemia represents one prominent component of the metabolic response to sepsis. In critically ill patients, hyperlactatemia is related to the severity of the underlying condition. Both an increased production and a decreased utilization and clearance might be involved in this process, but their relative contribution remains unknown. The present study aimed at assessing systemic and muscle lactate production and systemic lactate clearance in healthy human volunteers, using intravenous endotoxin (LPS) challenge. METHODS: Fourteen healthy male volunteers were enrolled in 2 consecutive studies (n = 6 in trial 1 and n = 8 in trial 2). Each subject took part in one of two investigation days (LPS-day with endotoxin injection and placebo-day with saline injection) separated by one week at least and in a random order. In trial 1, their muscle lactate metabolism was monitored using microdialysis. In trial 2, their systemic lactate metabolism was monitored by means of a constant infusion of exogenous lactate. Energy metabolism was monitored by indirect calorimetry and glucose kinetics was measured with 6,6-H2 glucose. RESULTS: In both trials, LPS increased energy expenditure (p = 0.011), lipid oxidation (p<0.0001), and plasma lactate concentration (p = 0.016). In trial 1, lactate concentration in the muscle microdialysate was higher than in blood, indicating lactate production by muscles. This was, however, similar with and without LPS. In trial 2, calculated systemic lactate production increased after LPS (p = 0.031), while lactate clearance remained unchanged. CONCLUSIONS: LPS administration increases lactatemia by increasing lactate production rather than by decreasing lactate clearance. Muscle is, however, unlikely to be a major contributor to this increase in lactate production. TRIAL REGISTRATION: ClinicalTrials.gov NCT01647997.
Resumo:
Among 645 obese patients examined at an out-patient clinic for obese patients by physical examination and a computerized questionnaire, two subgroups of patients could be identified according to their nutritional preferences: 177 patients preferred carbohydrates exclusively (group A) and 73 patients fat exclusively (group B). No definite preferences were formulated by the other patients. Among patients under 25 years, only 3 belonged to group B and 49 to group A, while in older patients no significant differences were found. Among patients with BMI less than 30, there were significantly fewer patients from group B than from group A (p = 0.006), while in patients with BMI greater than 30 no significant difference was observed. There were significantly more men in group B than in group A. 57% of the patients of group B complained of physical symptoms related to their obesity, compared to 37% in group A (p = 0.006). 26% of group B suffered from joints and muscles compared to 13% of group A (p = 0.003). Hyperglycemia (greater than 5,6 mmol/l) was found in 21% of group A and in 40% of group B (p less than 0.005). Hypercholesterolemia (greater than 6.5 mmol/l) was found in 20% of group A and in 32% of group B (p less than 0.05). In conclusion, obese patients who prefer fat have more general symptoms related to obesity, more abnormal physical signs, and more frequently have hyperglycemia and hypercholesterolemia than patients who prefer carbohydrates.
Resumo:
The nutritional status of cystic fibrosis (CF) patients has to be regularly evaluated and alimentary support instituted when indicated. Bio-electrical impedance analysis (BIA) is a recent method for determining body composition. The present study evaluates its use in CF patients without any clinical sign of malnutrition. Thirty-nine patients with CF and 39 healthy subjects aged 6-24 years were studied. Body density and mid-arm muscle circumference were determined by anthropometry and skinfold measurements. Fat-free mass was calculated taking into account the body density. Muscle mass was obtained from the urinary creatinine excretion rate. The resistance index was calculated by dividing the square of the subject's height by the body impedance. We show that fat-free mass, mid-arm muscle circumference and muscle mass are each linearly correlated to the resistance index and that the regression equations are similar for both CF patients and healthy subjects.
Resumo:
Severe heart failure and cerebral stroke are broadly associated with the impairment of muscular function that conventional treatments struggle to restore. New technologies enable the construction of "smart" materials that could be of great help in treating diseases where the main problem is muscle weakness. These materials "behave" similarly to biological systems, because the material directly converts energy, for example electrical energy into movement. The extension and contraction occur silently like in natural muscles. The real challenge is to transfer this amazing technology into devices that restore or replace the mechanical function of failing muscle. Cardiac assist devices based on artificial muscle technology could envelope a weak heart and temporarily improve its systolic function, or, if placed on top of the atrium, restore the atrial kick in chronic atrial fibrillation. Artificial sphincters could be used to treat urinary incontinence after prostatectomy or faecal incontinence associated with stomas. Artificial muscles can restore the ability of patients with facial paralysis due to stroke or nerve injury to blink. Smart materials could be used to construct an artificial oesophagus including peristaltic movement and lower oesophageal sphincter function to replace the diseased oesophagus thereby avoiding the need for laparotomy to mobilise stomach or intestine. In conclusion, in the near future, smart devices will integrate with the human body to fill functional gaps due to organ failure, and so create a human chimera.
Resumo:
In our area, varicella is a frequent and essentially benign childhood disease. In contrast, the disease course is likely to be more severe or complicated in the adult, particularly so in the pregnant woman. There is a definite risk of congenital varicella syndrome when the chickenpox occurs during the first 20 weeks of pregnancy. This syndrome predominantly affects the skin, the subcutaneous tissue, muscles and bones, as well as the central nervous system, and can bring about major functional sequellae. In case of chickenpox occurring at the very end of pregnancy, transplacental transfer of the virus may result in a perinatal varicella disease. We propose a approach of each of these different situations.
Resumo:
Résumé La Na,K-ATPase est une protéine transmembranaire, présente dans toutes les cellules de mammifères et indispensable à la viabilité cellulaire. Elle permet le maintien des gradients sodiques et potassiques à l'origine du potentiel membranaire en transportant 3 Na+ en dehors de la cellule contre 2 K+, grâce à l'énergie fournie par l'hydrolyse d'une molécule d'ATP. Le potentiel membranaire est indispensable au maintien de l'excitabilité cellulaire et à la transmission de l'influx nerveux. Il semblerait que la Na,K-ATPase soit liée à l'hypertension et à certains troubles neurologiques comme la Migraine Familiale Hémiplégique (1VIFH). La MFH est une forme de migraine avec aura, qui se caractérise par une hémiparésie. Cette forme de migraine est très rare. Elle se transmet génétiquement sur un mode autosomique dominant. Plusieurs mutations localisées dans le gène de la Na,K-ATPase ont été identifiées durant ces 3 dernières années. C'est la première fois qu'une maladie génétique est associée au gène de la Na,K-ATPase. La compréhension du fonctionnement de cette protéine peut donner des informations sur les mécanismes conduisant à ces pathologies. On sait que la fonction d'une protéine est liée à sa structure. L'étude de sa fonction nécessite donc l'étude de sa structure. Alors que la structure de la SERCA a été déterminée à haute résolution, par cristallographie, celle de la Na,K-ATPase ne l'est toujours pas. Mais ces 2 ATPases présentent une telle homologie qu'un modèle de la Na,K-ATPase a pu être élaboré à partir de la structure de la SERCA. Les objectifs de cette étude sont d'une part, de comprendre le contrôle de l'accessibilité du K+ extracellulaire àses sites de liaison. Pour cela, nous avons ciblé cette étude sur la 2ìème et la 31eme boucle extracellulaire, qui relient respectivement les segments transmembranaires (STM) 3-4 et 5-6. Le choix s'est porté sur ces 2 boucles car elles bordent le canal des cations formés des 4ième' Sième et 6'ème hélices. D'autre part, nous avons également essayer de comprendre les effets des mutations, liées à la Migraine Familiale Hémiplégique de type 2 (MFH2), sur la fonctionnalité de la Na,K-ATPase. Alors que les STM et les domaines cytoplasmiques sont relativement proches entre la Na,KATPase et la SERCA, les boucles extracellulaires présentent des différences. Le modèle n'est donc pas une approche fiable pour déterminer la structure et la fonction des régions extracellulaires. Nous avons alors utilisé une approche fonctionnelle faisant appel à la mutation dirigée puis à l'étude de l'activité fonctionnelle de la Na,K ATPase par électrophysiologie sur des ovocytes de Xenopus. En conclusion, nous pouvons dire que la troisième boucle extracellulaire participerait à la structure de la voie d'entrée des cations et que la deuxième boucle extracellulaire semble impliquée dans le contrôle de l'accessibilité des ions K+àses sites de liaison. Concernant les mutations associées à la MFH2, nos résultats ont montré une forte diminution de l'activité fonctionnelle de la pompe Na,K, inférieure aux conditions physiologiques de fonctionnement, et pour une des mutations nous avons observés une diminution de l'affmité apparente au K+ externe. Nous poumons faire l'hypothèse que l'origine pathologique de la migraine est liée à une diminution de l'activité de la pompe à Na+. Summary The Na,K-ATPase is a transmembrane protein, present in all mammalian cells and is necessary for the viability of the cells. It maintains the gradients of Na+ and K+ involved in the membrane potential, by transporting 3Na+ out the cell, and 2K+ into the cell, using the energy providing from one ATP molecule hydrolysis. The membrane potential is necessary for the cell excitability and for the transmission of the nervous signal. Some evidence show that Na,K-ATPase is involved in hypertension and neurological disorders like the Familial Hemiplegic Migraine (FHM). La FHM is a rare form of migraine characterised by aura and hemiparesis and an autosomal dominant transmission. Several mutations linked to the Na,KATPase gene have been identified during these 3 last years. It's the first genetic disorder associated with the Na,K-ATPase gene. Understand the function of this protein is important to elucidate the mechanisms implicated in these pathologies. The function of a protein is linked with its structure. Thus, to know the function of a protein, we need to know its structure. While the Ca-ATPase (SERCA) has been crystallised with a high resolution, the structure of the Na,K-ATPase is not known. Because of the great homology between these 2 ATPases, a model of the Na,K-ATPase was realised by comparing with the structure of the SERCA. The aim of this study is on one side, understand the control of the extracellular K+ accessibility to their binding sites. Because of theirs closed proximity with the cation pathway, located between the 4th, 5th and 6th helices, we have targeted this study on the 2nd and the 3rd extracellular loops linking respectively the transmembrane segment (TMS) 3 and 4, and the TMS 5 and 6. And on the other side, we have tried to understand the functional effects of mutations linked with the Familial Hemiplegic Migraine Type 2 (FHM2). In contrast with the transmembrane segments and the cytoplasmic domains, the extracellular loops show lots of difference between Na,K-ATPase and SERCA, the model is not a good approach to know the structure and the function of the extracellular loops. Thus, we have used a functional approach consisting in directed mutagenesis and the study of the functional activity of the Na,K-ATPase by electrophysiological techniques with Xenopus oocytes. In conclusion, we have demonstrated that the third extracellular loop could participate in the structure of the entry of the cations pathway and that the second extracellular loop could control the K+ accessibility to their binding sites. Concerning the mutations associated with the FHM2, our results showed a strong decrease in the functional activity of the Na,K-pump under physiological conditions and for one of mutations, induce a decrease in the apparent external K+ affinity. We could make the hypothesis that the pathogenesis of migraine is related to the decrease in Na,K-pump activity. Résumé au large publique De la même manière que l'assemblage des mots forme des phrases et que l'assemblage des phrases forme des histoires, l'assemblage des cellules forme des organes et l'ensemble des organes constitue les êtres vivants. La fonction d'une cellule dans le corps humain peut se rapprocher de celle d'une usine hydroélectrique. La matière première apportée est l'eau, l'usine électrique va ensuite convertir l'eau en énergie hydraulique pour fournir de l'électricité. Le fonctionnement de base d'une cellule suit le même processus. La cellule a besoin de matières premières (oxygène, nutriments, eau...) pour produire une énergie sous forme chimique, l'ATP. Cette énergie est utilisée par exemple pour contracter les muscles et permet donc à l'individu de se déplacer. Morphologiquement la cellule est une sorte de petit sac rempli de liquide (milieu intracellulaire) baignant elle-même dans le liquide (milieu extracellulaire) composant le corps humain (un adulte est constitué environ de 65 % d'eau). La composition du milieu intracellulaire est différente de celle du milieu extracellulaire. Cette différence doit être maintenue pour que l'organisme fonctionne correctement. Une des différences majeures est la quantité de sodium. En effet il y a beaucoup plus de sodium à l'extérieur qu'à l'intérieur de la cellule. Bien que l'intérieur de la cellule soit isolé de l'extérieur par une membrane, le sodium arrive à passer à travers cette membrane, ce qui a tendance à augmenter la quantité de sodium dans la cellule et donc à diminuer sa différence de concentration entre le milieu extracellulaire et le milieu intracellulaire. Mais dans les membranes, il existe des pompes qui tournent et dont le rôle est de rejeter le sodium de la cellule. Ces pompes sont des protéines connues sous le nom de pompe à sodium ou Na,K-ATPase. On lui attribue le nom de Na,K-ATPase car en réalité elle rejette du sodium (Na) et en échange elle fait entrer dans la cellule du potassium (K), et pour fonctionner elle a besoin d'énergie (ATP). Lorsque les pompes à sodium ne fonctionnent pas bien, cela peut conduire à des maladies. En effet la Migraine Familiale Hémiplégique de type 2, est une migraine très rare qui se caractérise par l'apparition de la paralysie de la moitié d'un corps avant l'apparition du mal de tête. C'est une maladie génétique (altération qui modifie la fonction d'une protéine) qui touche la pompe à sodium située dans le cerveau. On a découvert que certaines altérations (mutations) empêchent les pompes à sodium de fonctionner correctement. On pense alors que le développement des migraines est en partie dû au fait que ces pompes fonctionnent moins bien. Il est important de bien connaître la fonction de ces pompes car cela permet de comprendre des mécanismes pouvant conduire à certaines maladies, comme les migraines. En biologie, la fonction d'une protéine est étudiée à travers sa structure. C'est pourquoi l'objectif de cette thèse a été d'étudier la structure de la Na,K-ATPase afin de mieux comprendre son mécanisme d'action.
Resumo:
Rats chronically cannulated in the carotid artery and the muscular branch of the femoral vein were subjected to a cold (4 °C) environment for up to 2 h. The changes in blood flow (measured with 46Sc microspheres) and arterio-venous differences in the concentrations of glucose, lactate, triacylglycerols and amino acids allowed the estimation of substrate (and energy) balances across the hindleg. Mean glucose uptake was 0.28mmol min21, mean lactate release was 0.33mmol min21 and the free fatty acid basal release of 0.31mmol min21 was practically zero upon exposure to the cold; the initial uptake of triacylglycerols gave place to a massive release following exposure. The measurement of PO·, PCO· and pH also allowed the estimation of oxygen, CO2 and bicarbonate balances and respiratory quotient changes across the hindleg. The contribution of amino acids to the energy balance of the hindleg was assumed to be low. These data were used to determine the sources of energy used to maintain muscle shivering with time. Three distinct phases were observed in hindleg substrate utilization. (1) The onset of shivering, with the use of glucose/glycogen and an increase in lactate efflux. Lipid oxidation was practically zero (respiratory quotient near 1), but the uptake of triacylglycerols from the blood remained unchanged. (2) A substrate-energy shift, with drastically decreased use of glucose/glycogen, and of lactate efflux; utilization of triacylglycerol as practically the sole source of energy (respiratory quotient approximately 0.7); decreasing uptake of triacylglycerol and increased tissue lipid mobilization. (3) The onset of a new heat-homeostasis setting for prolonged cold-exposure, with maintenance of muscle energy and heat production based on triacylglycerol utilization and efflux from the hindleg (muscle plus skin and subcutaneous adipose masses) contributing energy to help sustain heat production by the core organs and surrounding brown adipose tissue.