846 resultados para multipel regression


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Experiments were undertaken to study drying kinetics of different shaped moist food particulates during heat pump assisted fluidised bed drying. Three particular geometrical shapes of parallelepiped, cylindrical and spheres were selected from potatoes (aspect ratio = 1:1, 2:1, 3:1), cut beans (length: diameter = 1:1, 2:1, 3:1) and peas respectively. A batch fluidised bed dryer connected to a heat pump system was used for the experimentation. A Heat pump and fluid bed combination was used to increase overall energy efficiency and achieve higher drying rates. Drying kinetics, were evaluated with non-dimensional moisture at three different drying temperatures of 30, 40 and 50o C. Due to complex hydrodynamics of the fluidised beds, drying kinetics are dryer or material specific. Numerous mathematical models can be used to calculate drying kinetics ranging from analytical models with simplified assumptions to empirical models built by regression using experimental data. Empirical models are commonly used for various food materials due to their simpler approach. However problems in accuracy, limits the applications of empirical models. Some limitations of empirical models could be reduced by using semi-empirical models based on heat and mass transfer of the drying operation. One such method is the quasi-stationary approach. In this study, a modified quasi-stationary approach was used to model drying kinetics of the cylindrical food particles at three drying temperatures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study assessed the reliability and validity of a palm-top-based electronic appetite rating system (EARS) in relation to the traditional paper and pen method. Twenty healthy subjects [10 male (M) and 10 female (F)] — mean age M=31 years (S.D.=8), F=27 years (S.D.=5); mean BMI M=24 (S.D.=2), F=21 (S.D.=5) — participated in a 4-day protocol. Measurements were made on days 1 and 4. Subjects were given paper and an EARS to log hourly subjective motivation to eat during waking hours. Food intake and meal times were fixed. Subjects were given a maintenance diet (comprising 40% fat, 47% carbohydrate and 13% protein by energy) calculated at 1.6×Resting Metabolic Rate (RMR), as three isoenergetic meals. Bland and Altman's test for bias between two measurement techniques found significant differences between EARS and paper and pen for two of eight responses (hunger and fullness). Regression analysis confirmed that there were no day, sex or order effects between ratings obtained using either technique. For 15 subjects, there was no significant difference between results, with a linear relationship between the two methods that explained most of the variance (r2 ranged from 62.6 to 98.6). The slope for all subjects was less than 1, which was partly explained by a tendency for bias at the extreme end of results on the EARS technique. These data suggest that the EARS is a useful and reliable technique for real-time data collection in appetite research but that it should not be used interchangeably with paper and pen techniques.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aims To identify self-care activities undertaken and determine relationships between self-efficacy, depression, quality of life, social support and adherence to compression therapy in a sample of patients with chronic venous insufficiency. Background Up to 70% of venous leg ulcers recur after healing. Compression hosiery is a primary strategy to prevent recurrence, however, problems with adherence to this strategy are well documented and an improved understanding of how psychosocial factors influence patients with chronic venous insufficiency will help guide effective preventive strategies. Design Cross-sectional survey and retrospective medical record review. Method All patients previously diagnosed with a venous leg ulcer which healed between 12–36 months prior to the study were invited to participate. Data on health, psychosocial variables and self-care activities were obtained from a self-report survey and data on medical and previous ulcer history were obtained from medical records. Multiple linear regression modelling was used to determine the independent influences of psychosocial factors on adherence to compression therapy. Results In a sample of 122 participants, the most frequently identified self-care activities were application of topical skin treatments, wearing compression hosiery and covering legs to prevent trauma. Compression hosiery was worn for a median of 4 days/week (range 0–7). After adjustment for all variables and potential confounders in a multivariable regression model, wearing compression hosiery was found to be significantly positively associated with participants’ knowledge of the cause of their condition (p=0.002), higher self-efficacy scores (p=0.026) and lower depression scores (p=0.009). Conclusion In this sample, depression, self-efficacy and knowledge were found to be significantly related to adherence to compression therapy. Relevance to clinical practice These findings support the need to screen for and treat depression in this population. In addition, strategies to improve patient knowledge and self-efficacy may positively influence adherence to compression therapy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hand-held mobile phone use while driving is illegal throughout Australia yet many drivers persist with this behaviour. This study aims to understand the internal, driver-related and external, situational-related factors influencing drivers’ willingness to use a hand-held mobile phone while driving. Sampling 160 university students, this study utilised the Theory of Planned Behaviour (TPB) to examine a range of belief-based constructs. Additionally, drivers’ personality traits of neuroticism and extroversion were measured with the Neuroticism Extroversion Openness-Five Factor Inventory (NEO-FFI). In relation to the external, situational-related factors, four different driving-related scenarios, which were intended to evoke differing levels of drivers’ reported stress, were devised for the study and manipulated drivers’ time urgency (low versus high) and passenger presence (alone versus with friends). In these scenarios, drivers’ willingness to use a mobile phone in general was measured. Hierarchical regression analyses across the four different driving scenarios found that, overall, the TPB components significantly accounted for drivers’ willingness to use a mobile phone above and beyond the demographic variables. Subjective norms, however, was only a significant predictor of drivers’ willingness in situations where the drivers were driving alone. Generally, neuroticism and extroversion did not significantly predict drivers’ willingness above and beyond the TPB and demographic variables. Overall, the findings broaden our understanding of the internal and external factors influencing drivers’ willingness to use a hand-held mobile phone while driving despite the illegality of this behaviour. The findings may have important practical implications in terms of better informing road safety campaigns targeting drivers’ mobile phone use which, in turn, may contribute to a reduction in the extent that mobile phone use contributes to road crashes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The high morbidity and mortality associated with atherosclerotic coronary vascular disease (CVD) and its complications are being lessened by the increased knowledge of risk factors, effective preventative measures and proven therapeutic interventions. However, significant CVD morbidity remains and sudden cardiac death continues to be a presenting feature for some subsequently diagnosed with CVD. Coronary vascular disease is also the leading cause of anaesthesia related complications. Stress electrocardiography/exercise testing is predictive of 10 year risk of CVD events and the cardiovascular variables used to score this test are monitored peri-operatively. Similar physiological time-series datasets are being subjected to data mining methods for the prediction of medical diagnoses and outcomes. This study aims to find predictors of CVD using anaesthesia time-series data and patient risk factor data. Several pre-processing and predictive data mining methods are applied to this data. Physiological time-series data related to anaesthetic procedures are subjected to pre-processing methods for removal of outliers, calculation of moving averages as well as data summarisation and data abstraction methods. Feature selection methods of both wrapper and filter types are applied to derived physiological time-series variable sets alone and to the same variables combined with risk factor variables. The ability of these methods to identify subsets of highly correlated but non-redundant variables is assessed. The major dataset is derived from the entire anaesthesia population and subsets of this population are considered to be at increased anaesthesia risk based on their need for more intensive monitoring (invasive haemodynamic monitoring and additional ECG leads). Because of the unbalanced class distribution in the data, majority class under-sampling and Kappa statistic together with misclassification rate and area under the ROC curve (AUC) are used for evaluation of models generated using different prediction algorithms. The performance based on models derived from feature reduced datasets reveal the filter method, Cfs subset evaluation, to be most consistently effective although Consistency derived subsets tended to slightly increased accuracy but markedly increased complexity. The use of misclassification rate (MR) for model performance evaluation is influenced by class distribution. This could be eliminated by consideration of the AUC or Kappa statistic as well by evaluation of subsets with under-sampled majority class. The noise and outlier removal pre-processing methods produced models with MR ranging from 10.69 to 12.62 with the lowest value being for data from which both outliers and noise were removed (MR 10.69). For the raw time-series dataset, MR is 12.34. Feature selection results in reduction in MR to 9.8 to 10.16 with time segmented summary data (dataset F) MR being 9.8 and raw time-series summary data (dataset A) being 9.92. However, for all time-series only based datasets, the complexity is high. For most pre-processing methods, Cfs could identify a subset of correlated and non-redundant variables from the time-series alone datasets but models derived from these subsets are of one leaf only. MR values are consistent with class distribution in the subset folds evaluated in the n-cross validation method. For models based on Cfs selected time-series derived and risk factor (RF) variables, the MR ranges from 8.83 to 10.36 with dataset RF_A (raw time-series data and RF) being 8.85 and dataset RF_F (time segmented time-series variables and RF) being 9.09. The models based on counts of outliers and counts of data points outside normal range (Dataset RF_E) and derived variables based on time series transformed using Symbolic Aggregate Approximation (SAX) with associated time-series pattern cluster membership (Dataset RF_ G) perform the least well with MR of 10.25 and 10.36 respectively. For coronary vascular disease prediction, nearest neighbour (NNge) and the support vector machine based method, SMO, have the highest MR of 10.1 and 10.28 while logistic regression (LR) and the decision tree (DT) method, J48, have MR of 8.85 and 9.0 respectively. DT rules are most comprehensible and clinically relevant. The predictive accuracy increase achieved by addition of risk factor variables to time-series variable based models is significant. The addition of time-series derived variables to models based on risk factor variables alone is associated with a trend to improved performance. Data mining of feature reduced, anaesthesia time-series variables together with risk factor variables can produce compact and moderately accurate models able to predict coronary vascular disease. Decision tree analysis of time-series data combined with risk factor variables yields rules which are more accurate than models based on time-series data alone. The limited additional value provided by electrocardiographic variables when compared to use of risk factors alone is similar to recent suggestions that exercise electrocardiography (exECG) under standardised conditions has limited additional diagnostic value over risk factor analysis and symptom pattern. The effect of the pre-processing used in this study had limited effect when time-series variables and risk factor variables are used as model input. In the absence of risk factor input, the use of time-series variables after outlier removal and time series variables based on physiological variable values’ being outside the accepted normal range is associated with some improvement in model performance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Police work tasks are diverse and require the ability to take command, demonstrate leadership, make serious decisions and be self directed (Beck, 1999; Brunetto & Farr-Wharton, 2002; Howard, Donofrio & Boles, 2002). This work is usually performed in pairs or sometimes by an officer working alone. Operational police work is seldom performed under the watchful eyes of a supervisor and a great amount of reliance is placed on the high levels of motivation and professionalism of individual officers. Research has shown that highly motivated workers produce better outcomes (Whisenand & Rush, 1998; Herzberg, 2003). It is therefore important that Queensland police officers are highly motivated to provide a quality service to the Queensland community. This research aims to identify factors which motivate Queensland police to perform quality work. Researchers acknowledge that there is a lack of research and knowledge in regard to the factors which motivate police (Beck, 1999; Bragg, 1998; Howard, Donofrio & Boles, 2002; McHugh & Verner, 1998). The motivational factors were identified in regard to the demographic variables of; age, sex, rank, tenure and education. The model for this research is Herzberg’s two-factor theory of workplace motivation (1959). Herzberg found that there are two broad types of workplace motivational factors; those driven by a need to prevent loss or harm and those driven by a need to gain personal satisfaction or achievement. His study identified 16 basic sub-factors that operate in the workplace. The research utilised a questionnaire instrument based on the sub-factors identified by Herzberg (1959). The questionnaire format consists of an initial section which sought demographic information about the participant and is followed by 51 Likert scale questions. The instrument is an expanded version of an instrument previously used in doctoral studies to identify sources of police motivation (Holden, 1980; Chiou, 2004). The questionnaire was forwarded to approximately 960 police in the Brisbane, Metropolitan North Region. The data were analysed using Factor Analysis, MANOVAs, ANOVAs and multiple regression analysis to identify the key sources of police motivation and to determine the relationships between demographic variables such as: age, rank, educational level, tenure, generation cohort and motivational factors. A total of 484 officers responded to the questionnaire from the sample population of 960. Factor analysis revealed five broad Prime Motivational Factors that motivate police in their work. The Prime Motivational Factors are: Feeling Valued, Achievement, Workplace Relationships, the Work Itself and Pay and Conditions. The factor Feeling Valued highlighted the importance of positive supportive leaders in motivating officers. Many officers commented that supervisors who only provided negative feedback diminished their sense of feeling valued and were a key source of de-motivation. Officers also frequently commented that they were motivated by operational police work itself whilst demonstrating a strong sense of identity with their team and colleagues. The study showed a general need for acceptance by peers and an idealistic motivation to assist members of the community in need and protect victims of crime. Generational cohorts were not found to exert a significant influence on police motivation. The demographic variable with the single greatest influence on police motivation was tenure. Motivation levels were found to drop dramatically during the first two years of an officer’s service and generally not improve significantly until near retirement age. The findings of this research provide the foundation of a number of recommendations in regard to police retirement, training and work allocation that are aimed to improve police motivation levels. The five Prime Motivational Factor model developed in this study is recommended for use as a planning tool by police leaders to improve motivational and job-satisfaction components of police Service policies. The findings of this study also provide a better understanding of the current sources of police motivation. They are expected to have valuable application for Queensland police human resource management when considering policies and procedures in the areas of motivation, stress reduction and attracting suitable staff to specific areas of responsibility.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents the results of a structural equation model (SEM) for describing and quantifying the fundamental factors that affect contract disputes between owners and contractors in the construction industry. Through this example, the potential impact of SEM analysis in construction engineering and management research is illustrated. The purpose of the specific model developed in this research is to explain how and why contract related construction problems occur. This study builds upon earlier work, which developed a disputes potential index, and the likelihood of construction disputes was modeled using logistic regression. In this earlier study, questionnaires were completed on 159 construction projects, which measured both qualitative and quantitative aspects of contract disputes, management ability, financial planning, risk allocation, and project scope definition for both owners and contractors. The SEM approach offers several advantages over the previously employed logistic regression methodology. The final set of structural equations provides insight into the interaction of the variables that was not apparent in the original logistic regression modeling methodology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The paper examines whether there was an excess of deaths and the relative role of temperature and ozone in a heatwave during 7–26 February 2004 in Brisbane, Australia, a subtropical city accustomed to warm weather. The data on daily counts of deaths from cardiovascular disease and non-external causes, meteorological conditions, and air pollution in Brisbane from 1 January 2001 to 31 October 2004 were supplied by the Australian Bureau of Statistics, Australian Bureau of Meteorology, and Queensland Environmental Protection Agency, respectively. The relationship between temperature and mortality was analysed using a Poisson time series regression model with smoothing splines to control for nonlinear effects of confounding factors. The highest temperature recorded in the 2004 heatwave was 42°C compared with the highest recorded temperature of 34°C during the same periods of 2001–2003. There was a significant relationship between exposure to heat and excess deaths in the 2004 heatwave estimated increase in non-external deaths: 75 [(95% confidence interval, CI: 11–138; cardiovascular deaths: 41 (95% CI: −2 to 84)]. There was no apparent evidence of substantial short-term mortality displacement. The excess deaths were mainly attributed to temperature but exposure to ozone also contributed to these deaths.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Artificial neural network (ANN) learning methods provide a robust and non-linear approach to approximating the target function for many classification, regression and clustering problems. ANNs have demonstrated good predictive performance in a wide variety of practical problems. However, there are strong arguments as to why ANNs are not sufficient for the general representation of knowledge. The arguments are the poor comprehensibility of the learned ANN, and the inability to represent explanation structures. The overall objective of this thesis is to address these issues by: (1) explanation of the decision process in ANNs in the form of symbolic rules (predicate rules with variables); and (2) provision of explanatory capability by mapping the general conceptual knowledge that is learned by the neural networks into a knowledge base to be used in a rule-based reasoning system. A multi-stage methodology GYAN is developed and evaluated for the task of extracting knowledge from the trained ANNs. The extracted knowledge is represented in the form of restricted first-order logic rules, and subsequently allows user interaction by interfacing with a knowledge based reasoner. The performance of GYAN is demonstrated using a number of real world and artificial data sets. The empirical results demonstrate that: (1) an equivalent symbolic interpretation is derived describing the overall behaviour of the ANN with high accuracy and fidelity, and (2) a concise explanation is given (in terms of rules, facts and predicates activated in a reasoning episode) as to why a particular instance is being classified into a certain category.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This dissertation is primarily an applied statistical modelling investigation, motivated by a case study comprising real data and real questions. Theoretical questions on modelling and computation of normalization constants arose from pursuit of these data analytic questions. The essence of the thesis can be described as follows. Consider binary data observed on a two-dimensional lattice. A common problem with such data is the ambiguity of zeroes recorded. These may represent zero response given some threshold (presence) or that the threshold has not been triggered (absence). Suppose that the researcher wishes to estimate the effects of covariates on the binary responses, whilst taking into account underlying spatial variation, which is itself of some interest. This situation arises in many contexts and the dingo, cypress and toad case studies described in the motivation chapter are examples of this. Two main approaches to modelling and inference are investigated in this thesis. The first is frequentist and based on generalized linear models, with spatial variation modelled by using a block structure or by smoothing the residuals spatially. The EM algorithm can be used to obtain point estimates, coupled with bootstrapping or asymptotic MLE estimates for standard errors. The second approach is Bayesian and based on a three- or four-tier hierarchical model, comprising a logistic regression with covariates for the data layer, a binary Markov Random field (MRF) for the underlying spatial process, and suitable priors for parameters in these main models. The three-parameter autologistic model is a particular MRF of interest. Markov chain Monte Carlo (MCMC) methods comprising hybrid Metropolis/Gibbs samplers is suitable for computation in this situation. Model performance can be gauged by MCMC diagnostics. Model choice can be assessed by incorporating another tier in the modelling hierarchy. This requires evaluation of a normalization constant, a notoriously difficult problem. Difficulty with estimating the normalization constant for the MRF can be overcome by using a path integral approach, although this is a highly computationally intensive method. Different methods of estimating ratios of normalization constants (N Cs) are investigated, including importance sampling Monte Carlo (ISMC), dependent Monte Carlo based on MCMC simulations (MCMC), and reverse logistic regression (RLR). I develop an idea present though not fully developed in the literature, and propose the Integrated mean canonical statistic (IMCS) method for estimating log NC ratios for binary MRFs. The IMCS method falls within the framework of the newly identified path sampling methods of Gelman & Meng (1998) and outperforms ISMC, MCMC and RLR. It also does not rely on simplifying assumptions, such as ignoring spatio-temporal dependence in the process. A thorough investigation is made of the application of IMCS to the three-parameter Autologistic model. This work introduces background computations required for the full implementation of the four-tier model in Chapter 7. Two different extensions of the three-tier model to a four-tier version are investigated. The first extension incorporates temporal dependence in the underlying spatio-temporal process. The second extensions allows the successes and failures in the data layer to depend on time. The MCMC computational method is extended to incorporate the extra layer. A major contribution of the thesis is the development of a fully Bayesian approach to inference for these hierarchical models for the first time. Note: The author of this thesis has agreed to make it open access but invites people downloading the thesis to send her an email via the 'Contact Author' function.