939 resultados para multi-proxy lake sediment study
Resumo:
PURPOSE: To prospectively evaluate, for the depiction of simulated hypervascular liver lesions in a phantom, the effect of a low tube voltage, high tube current computed tomographic (CT) technique on image noise, contrast-to-noise ratio (CNR), lesion conspicuity, and radiation dose. MATERIALS AND METHODS: A custom liver phantom containing 16 cylindric cavities (four cavities each of 3, 5, 8, and 15 mm in diameter) filled with various iodinated solutions to simulate hypervascular liver lesions was scanned with a 64-section multi-detector row CT scanner at 140, 120, 100, and 80 kVp, with corresponding tube current-time product settings at 225, 275, 420, and 675 mAs, respectively. The CNRs for six simulated lesions filled with different iodinated solutions were calculated. A figure of merit (FOM) for each lesion was computed as the ratio of CNR2 to effective dose (ED). Three radiologists independently graded the conspicuity of 16 simulated lesions. An anthropomorphic phantom was scanned to evaluate the ED. Statistical analysis included one-way analysis of variance. RESULTS: Image noise increased by 45% with the 80-kVp protocol compared with the 140-kVp protocol (P < .001). However, the lowest ED and the highest CNR were achieved with the 80-kVp protocol. The FOM results indicated that at a constant ED, a reduction of tube voltage from 140 to 120, 100, and 80 kVp increased the CNR by factors of at least 1.6, 2.4, and 3.6, respectively (P < .001). At a constant CNR, corresponding reductions in ED were by a factor of 2.5, 5.5, and 12.7, respectively (P < .001). The highest lesion conspicuity was achieved with the 80-kVp protocol. CONCLUSION: The CNR of simulated hypervascular liver lesions can be substantially increased and the radiation dose reduced by using an 80-kVp, high tube current CT technique.
Resumo:
Water-saturated debris flows are among some of the most destructive mass movements. Their complex nature presents a challenge for quantitative description and modeling. In order to improve understanding of the dynamics of these flows, it is important to seek a simplified dynamic system underlying their behavior. Models currently in use to describe the motion of debris flows employ depth-averaged equations of motion, typically assuming negligible effects from vertical acceleration. However, in many cases debris flows experience significant vertical acceleration as they move across irregular surfaces, and it has been proposed that friction associated with vertical forces and liquefaction merit inclusion in any comprehensive mechanical model. The intent of this work is to determine the effect of vertical acceleration through a series of laboratory experiments designed to simulate debris flows, testing a recent model for debris flows experimentally. In the experiments, a mass of water-saturated sediment is released suddenly from a holding container, and parameters including rate of collapse, pore-fluid pressure, and bed load are monitored. Experiments are simplified to axial geometry so that variables act solely in the vertical dimension. Steady state equations to infer motion of the moving sediment mass are not sufficient to model accurately the independent solid and fluid constituents in these experiments. The model developed in this work more accurately predicts the bed-normal stress of a saturated sediment mass in motion and illustrates the importance of acceleration and deceleration.
Resumo:
The Great Lakes watershed is home to over 40 million people, and the health of the Great Lakes ecosystem is vital to the overall economic, societal, and environmental health of the U.S. and Canada. However, environmental issues related to them are sometimes overlooked. Policymakers and the public face the challenges of balancing economic benefits with the need to conserve and/or replenish regional natural resources to ensure long term prosperity. From the literature review, nine critical stressors of ecological services were delineated, which include pollution and contamination, agricultural erosion, non-native species, degraded recreational resources, loss of wetlands habitat, climate change, risk of clean water shortage, vanishing sand dunes, and population overcrowding; this list was validated through a series of stakeholder discussions and focus groups in Grand Rapids. Focus groups were conducted in Grand Rapids to examine the awareness of, concern with, and willingness to expend resources on these stressors. Stressors that the respondents have direct contact with tend to be the most important. The focus group results show that concern related to pollution and contamination is much higher than for any of the other stressors. Low responses to climate change result in recommendations for outreach programs.
Resumo:
With proper application of Best Management Practices (BMPs), the impact from the sediment to the water bodies could be minimized. However, finding the optimal allocation of BMP can be difficult, since there are numerous possible options. Also, economics plays an important role in BMP affordability and, therefore, the number of BMPs able to be placed in a given budget year. In this study, two methodologies are presented to determine the optimal cost-effective BMP allocation, by coupling a watershed-level model, Soil and Water Assessment Tool (SWAT), with two different methods, targeting and a multi-objective genetic algorithm (Non-dominated Sorting Genetic Algorithm II, NSGA-II). For demonstration, these two methodologies were applied to an agriculture-dominant watershed located in Lower Michigan to find the optimal allocation of filter strips and grassed waterways. For targeting, three different criteria were investigated for sediment yield minimization, during the process of which it was found that the grassed waterways near the watershed outlet reduced the watershed outlet sediment yield the most under this study condition, and cost minimization was also included as a second objective during the cost-effective BMP allocation selection. NSGA-II was used to find the optimal BMP allocation for both sediment yield reduction and cost minimization. By comparing the results and computational time of both methodologies, targeting was determined to be a better method for finding optimal cost-effective BMP allocation under this study condition, since it provided more than 13 times the amount of solutions with better fitness for the objective functions while using less than one eighth of the SWAT computational time than the NSGA-II with 150 generations did.
Resumo:
A detailed paleomagnetic and rock-magnetic investigation was conducted on thirty six basaltic flows of the ~1095 Ma Portage Lake Volcanics. The flows were sampled along the East Adit of the Quincy Mine (Hancock, MI). Thirty two flows yielded well-defined primary magnetization directions carried by magnetite. A secondary magnetization component carried by hematite was also found in twenty nine flows. After correction for serial correlation between the flows, nineteen independent mean directions were calculated. The corresponding paleomagnetic pole is located at 25.5 °N, 182.1 °W (A95 = 3.5°). The new pole overlaps with the pole from the ~1087 Ma Lake Shore Traps suggesting a standstill of the North American plate during that time period. The low angular dispersion of virtual geomagnetic poles (S = 7.9°) suggests that the flows were erupted within a short time period, or that the strength of geomagnetic secular variation was lower than that of the recent field.
Resumo:
Major environmental events that fragment populations among multiple island habitats have potential to drive large-scale episodes of speciation and adaptive radiation. A recent palaeolimnological study of sediment cores indicated that Lake Malawi underwent major climate-driven desiccation events 75 000-135 000 years ago that lowered the water level to at least 580 m below the present state and severely reduced surface area. After this period, lake levels rose and stabilized, creating multiple discontinuous littoral rocky habitats. Here, we present evidence supporting the hypothesis that establishment and expansion of isolated philopatric rock cichlid populations occurred after this rise and stabilization of lake level. We studied the Pseudotropheus (Maylandia) species complex, a group with both allopatric and sympatric populations that differ in male nuptial colour traits and tend to mate assortatively. Using coalescent analyses based on mitochondrial DNA, we found evidence that populations throughout the lake started to expand and accumulate genetic diversity after the lake level rise. Moreover, most haplotypes were geographically restricted, and the greatest genetic similarities were typically among sympatric or neighbouring populations. This is indicative of limited dispersal and establishment of assortative mating among populations following the lake level rise. Together, this evidence is compatible with a single large-scale environmental event being central to evolution of spatial patterns of genetic and species diversity in P. (Maylandia) and perhaps other Lake Malawi rock cichlids. Equivalent climate-driven pulses of habitat formation and fragmentation may similarly have contributed to observed rapid and punctuated cladogenesis in other adaptive radiations.
A prototype liquid Argon Time Projection Chamber for the study of UV laser multi-photonic ionization
Resumo:
Understanding past methane dynamics in arctic wetlands and lakes is crucial for estimating future methane release. Methane fluxes from lake ecosystems have increasingly been studied, yet only few reconstructions of past methane emissions from lakes are available. In this study, we develop an approach to assess changes in methane availability in lakes based on δ13C of chitinous invertebrate remains and apply this to a sediment record from a Siberian thermokarst lake. Diffusive methane fluxes from the surface of ten newly sampled Siberian lakes and seven previously studied Swedish lakes were compared to taxon-specific δ13C values of invertebrate remains from lake surface sediments to investigate whether these invertebrates assimilated 13C-depleted carbon typical for methane. Remains of chironomid larvae of the tribe Orthocladiinae that, in the study lakes, mainly assimilate plant-derived carbon had higher δ13C than other invertebrate groups. δ13C of other invertebrates such as several chironomid groups (Chironomus, Chironomini, Tanytarsini, and Tanypodinae), cladocerans (Daphnia), and ostracods were generally lower. δ13C of Chironomini and Daphnia, and to a lesser extent Tanytarsini was variable in the lakes and lower at sites with higher diffusive methane fluxes. δ13C of Chironomini, Tanytarsini, and Daphnia were correlated significantly with diffusive methane flux in the combined Siberian and Swedish dataset (r = −0.72, p = 0.001, r = −0.53, p = 0.03, and r = −0.81, p < 0.001, respectively), suggesting that δ13C in these invertebrates was affected by methane availability. In a second step, we measured δ13C of invertebrate remains from a sediment record of Lake S1, a shallow thermokarst lake in northeast Siberia. In this record, covering the past ca 1000 years, δ13C of taxa most sensitive to methane availability (Chironomini, Tanytarsini, and Daphnia) was lowest in sediments deposited from ca AD 1250 to ca AD 1500, and after AD 1970, coinciding with warmer climate as indicated by an independent local temperature record. As a consequence the offset in δ13C between methane-sensitive taxa and bulk organic matter was higher in these sections than in other parts of the core. In contrast, δ13C of other invertebrate taxa did not show this trend. Our results suggest higher methane availability in the study lake during warmer periods and that thermokarst lakes can respond dynamically in their methane output to changing environmental conditions.
Resumo:
A lack of quantitative high resolution paleoclimate data from the Southern Hemisphere limits the ability to examine current trends within the context of long-term natural climate variability. This study presents a temperature reconstruction for southern Tasmania based on analyses of a sediment core from Duckhole Lake (43.365°S, 146.875°E). The relationship between non-destructive whole core scanning reflectance spectroscopy measurements in the visible spectrum (380–730 nm) and the instrumental temperature record (ad 1911–2000) was used to develop a calibration-in-time reflectance spectroscopy-based temperature model. Results showed that a trough in reflectance from 650 to 700 nm, which represents chlorophyll and its derivatives, was significantly correlated to annual mean temperature. A calibration model was developed (R = 0.56, p auto < 0.05, root mean squared error of prediction (RMSEP) = 0.21°C, five-year filtered data, calibration period 1911–2000) and applied down-core to reconstruct annual mean temperatures in southern Tasmania over the last c. 950 years. This indicated that temperatures were initially cool c. ad 1050, but steadily increased until the late ad 1100s. After a brief cool period in the ad 1200s, temperatures again increased. Temperatures steadily decreased during the ad 1600s and remained relatively stable until the start of the 20th century when they rapidly decreased, before increasing from ad 1960s onwards. Comparisons with high resolution temperature records from western Tasmania, New Zealand and South America revealed some similarities, but also highlighted differences in temperature variability across the mid-latitudes of the Southern Hemisphere. These are likely due to a combination of factors including the spatial variability in climate between and within regions, and differences between records that document seasonal (i.e. warm season/late summer) versus annual temperature variability. This highlights the need for further records from the mid-latitudes of the Southern Hemisphere in order to constrain past natural spatial and seasonal/annual temperature variability in the region, and to accurately identify and attribute changes to natural variability and/or anthropogenic activities.