925 resultados para multi-objective genetic algorithms
Resumo:
Given the limitations of different types of remote sensing images, automated land-cover classifications of the Amazon várzea may yield poor accuracy indexes. One way to improve accuracy is through the combination of images from different sensors, by either image fusion or multi-sensor classifications. Therefore, the objective of this study was to determine which classification method is more efficient in improving land cover classification accuracies for the Amazon várzea and similar wetland environments - (a) synthetically fused optical and SAR images or (b) multi-sensor classification of paired SAR and optical images. Land cover classifications based on images from a single sensor (Landsat TM or Radarsat-2) are compared with multi-sensor and image fusion classifications. Object-based image analyses (OBIA) and the J.48 data-mining algorithm were used for automated classification, and classification accuracies were assessed using the kappa index of agreement and the recently proposed allocation and quantity disagreement measures. Overall, optical-based classifications had better accuracy than SAR-based classifications. Once both datasets were combined using the multi-sensor approach, there was a 2% decrease in allocation disagreement, as the method was able to overcome part of the limitations present in both images. Accuracy decreased when image fusion methods were used, however. We therefore concluded that the multi-sensor classification method is more appropriate for classifying land cover in the Amazon várzea.
Resumo:
Dissertação de mestrado integrado em Engenharia Civil
Resumo:
In our work we have chosen to integrate formalism for knowledge representation with formalism for process representation as a way to specify and regulate the overall activity of a multi-cellular agent. The result of this approach is XP,N, another formalism, wherein a distributed system can be modeled as a collection of interrelated sub-nets sharing a common explicit control structure. Each sub-net represents a system of asynchronous concurrent threads modeled by a set of transitions. XP,N combines local state and control with interaction and hierarchy to achieve a high-level abstraction and to model the complex relationships between all the components of a distributed system. Viewed as a tool XP,N provides a carefully devised conflict resolution strategy that intentionally mimics the genetic regulatory mechanism used in an organic cell to select the next genes to process.
Resumo:
During must fermentation by Saccharomyces cerevisiae strains thousands of volatile aroma compounds are formed. The objective of the present work was to adapt computational approaches to analyze pheno-metabolomic diversity of a S. cerevisiae strain collection with different origins. Phenotypic and genetic characterization together with individual must fermentations were performed, and metabolites relevant to aromatic profiles were determined. Experimental results were projected onto a common coordinates system, revealing 17 statistical-relevant multi-dimensional modules, combining sets of most-correlated features of noteworthy biological importance. The present method allowed, as a breakthrough, to combine genetic, phenotypic and metabolomic data, which has not been possible so far due to difficulties in comparing different types of data. Therefore, the proposed computational approach revealed as successful to shed light into the holistic characterization of S. cerevisiae pheno-metabolome in must fermentative conditions. This will allow the identification of combined relevant features with application in selection of good winemaking strains.
Resumo:
OBJECTIVE: To assess the risk factors, lipid and apolipoprotein profile, hemostasis variables, and polymorphisms of the apolipoprotein AI-CIII gene in early coronary artery disease (CAD). METHODS: Case-control study with 112 patients in each group controlled by sex and age. After clinical evaluation and nutritional instruction, blood samples were collected for biochemical assays and genetic study. RESULTS: Familial history of early CAD (64 vs 39%), arterial hypertension (69 vs 36%), diabetes mellitus (25 vs 3%), and previous smoking (71 vs 46%) were more prevalent in the case group (p<0.001). Hypertension and diabetes were independent risk factors. Early CAD was characterized by higher serum levels of total cholesterol (235 ± 6 vs 209 ± 4 mg/dL), of LDL-c (154 ± 5 vs 135 ± 4 mg/dL), triglycerides (205 ± 12 vs 143 ± 9 mg/dL), and apolipoprotein B (129 ± 3 vs 105 ± 3 mg/dL), and lower serum levels of HDL-c (40 ± 1 vs 46 ± 1 mg/dL) and apolipoprotein AI (134 ± 2 vs 146 ± 2mg/dL) [p<0.01], in addition to an elevation in fibrinogen and D-dimer (p<0.02). The simultaneous presence of the rare alleles of the APO AI-CIII genes in early CAD are associated with hypertriglyceridemia (p=0.03). CONCLUSION: Of the classical risk factors, hypertension and diabetes mellitus were independently associated with early CAD. In addition to an unfavorable lipid profile, an increase in the thrombotic risk was identified in this population. An additive effect of the APO AI-CIII genes was observed in triglyceride levels.
Resumo:
El objetivo general de este proyecto es desarrollar nuevos modelos multi-dominio de máquinas eléctricas para aplicaciones al control y al diagnóstico de fallas. Se propone comenzar con el modelo electromagnético del motor de inducción en base a circuitos magnéticos equivalentes (MEC) validándolo por medio de simulación y de resultados experimentales. Como segundo paso se pretende desarrollas modelos térmicos y mecánicos con el objetivo que puedan ser acoplados al modelo electromagnético y de esta estudiar la interacción de los dominios y se validará mediante resultados de simulación y experimentales el modelo completo. Finalmente se pretende utilizar el modelo multi-dominio como una herramienta para la prueba de nuevas estrategias de control y diagnóstico de fallas. The main objective of this project is the development of new multi-domain models of electric machines for control and fault diagnosis applications. The electromagnetic modeling of the induction motor (IM) will be done using the magnetic equivalent circuits approach. This model will be validated by simulation and by experimental results. As a second step of this project, new mechanical and thermal models for the IM will be developed, with the objective of coupling these models with the electromagnetic one. With this multi-domain model it will be possible to study the interaction between each others. After that, the complete model will be validated by simulation and experimental results. Finally, the model will be used as a tool for testing new control and fault diagnosis strategies.
Resumo:
The main argument developed here is the proposal of the concept of “Social Multi-Criteria Evaluation” (SMCE) as a possible useful framework for the application of social choice to the difficult policy problems of our Millennium, where, as stated by Funtowicz and Ravetz, “facts are uncertain, values in dispute, stakes high and decisions urgent”. This paper starts from the following main questions: 1. Why “Social” Multi-criteria Evaluation? 2. How such an approach should be developed? The foundations of SMCE are set up by referring to concepts coming from complex system theory and philosophy, such as reflexive complexity, post-normal science and incommensurability. To give some operational guidelines on the application of SMCE basic questions to be answered are: 1. How is it possible to deal with technical incommensurability? 2. How can we deal with the issue of social incommensurability? To answer these questions, by using theoretical considerations and lessons learned from realworld case studies, is the main objective of the present article.
Resumo:
The objective of this work was to develop an easily applicable technique and a standardized protocol for high-quality post-mortem angiography. This protocol should (1) increase the radiological interpretation by decreasing artifacts due to the perfusion and by reaching a complete filling of the vascular system and (2) ease and standardize the execution of the examination. To this aim, 45 human corpses were investigated by post-mortem computed tomography (CT) angiography using different perfusion protocols, a modified heart-lung machine and a new contrast agent mixture, specifically developed for post-mortem investigations. The quality of the CT angiographies was evaluated radiologically by observing the filling of the vascular system and assessing the interpretability of the resulting images and by comparing radiological diagnoses to conventional autopsy conclusions. Post-mortem angiography yielded satisfactory results provided that the volumes of the injected contrast agent mixture were high enough to completely fill the vascular system. In order to avoid artifacts due to the post-mortem perfusion, a minimum of three angiographic phases and one native scan had to be performed. These findings were taken into account to develop a protocol for quality post-mortem CT angiography that minimizes the risk of radiological misinterpretation. The proposed protocol is easy applicable in a standardized way and yields high-quality radiologically interpretable visualization of the vascular system in post-mortem investigations.
Resumo:
Introduction: Coordination is a strategy chosen by the central nervous system to control the movements and maintain stability during gait. Coordinated multi-joint movements require a complex interaction between nervous outputs, biomechanical constraints, and pro-prioception. Quantitatively understanding and modeling gait coordination still remain a challenge. Surgeons lack a way to model and appreciate the coordination of patients before and after surgery of the lower limbs. Patients alter their gait patterns and their kinematic synergies when they walk faster or slower than normal speed to maintain their stability and minimize the energy cost of locomotion. The goal of this study was to provide a dynamical system approach to quantitatively describe human gait coordination and apply it to patients before and after total knee arthroplasty. Methods: A new method of quantitative analysis of interjoint coordination during gait was designed, providing a general model to capture the whole dynamics and showing the kinematic synergies at various walking speeds. The proposed model imposed a relationship among lower limb joint angles (hips and knees) to parameterize the dynamics of locomotion of each individual. An integration of different analysis tools such as Harmonic analysis, Principal Component Analysis, and Artificial Neural Network helped overcome high-dimensionality, temporal dependence, and non-linear relationships of the gait patterns. Ten patients were studied using an ambulatory gait device (Physilog®). Each participant was asked to perform two walking trials of 30m long at 3 different speeds and to complete an EQ-5D questionnaire, a WOMAC and Knee Society Score. Lower limbs rotations were measured by four miniature angular rate sensors mounted respectively, on each shank and thigh. The outcomes of the eight patients undergoing total knee arthroplasty, recorded pre-operatively and post-operatively at 6 weeks, 3 months, 6 months and 1 year were compared to 2 age-matched healthy subjects. Results: The new method provided coordination scores at various walking speeds, ranged between 0 and 10. It determined the overall coordination of the lower limbs as well as the contribution of each joint to the total coordination. The difference between the pre-operative and post-operative coordination values were correlated with the improvements of the subjective outcome scores. Although the study group was small, the results showed a new way to objectively quantify gait coordination of patients undergoing total knee arthroplasty, using only portable body-fixed sensors. Conclusion: A new method for objective gait coordination analysis has been developed with very encouraging results regarding the objective outcome of lower limb surgery.
Resumo:
In recent years, multi-atlas fusion methods have gainedsignificant attention in medical image segmentation. Inthis paper, we propose a general Markov Random Field(MRF) based framework that can perform edge-preservingsmoothing of the labels at the time of fusing the labelsitself. More specifically, we formulate the label fusionproblem with MRF-based neighborhood priors, as an energyminimization problem containing a unary data term and apairwise smoothness term. We present how the existingfusion methods like majority voting, global weightedvoting and local weighted voting methods can be reframedto profit from the proposed framework, for generatingmore accurate segmentations as well as more contiguoussegmentations by getting rid of holes and islands. Theproposed framework is evaluated for segmenting lymphnodes in 3D head and neck CT images. A comparison ofvarious fusion algorithms is also presented.
Resumo:
The implicit projection algorithm of isotropic plasticity is extended to an objective anisotropic elastic perfectly plastic model. The recursion formula developed to project the trial stress on the yield surface, is applicable to any non linear elastic law and any plastic yield function.A curvilinear transverse isotropic model based on a quadratic elastic potential and on Hill's quadratic yield criterion is then developed and implemented in a computer program for bone mechanics perspectives. The paper concludes with a numerical study of a schematic bone-prosthesis system to illustrate the potential of the model.
Resumo:
The objective of this study is to determine whether various hycanthone resistant strains of schistosomes which have been independently isolated are all affected in the same gene. A strain obtained from a Brazilian patient was compared with a strain of Puerto Rican origin selected in the laboratory. If the mutation conferring resistance involved two different genes, one would expect that the progeny of a cross between the two strains would show complementation, i.e. it would be sensitive to the drug. We have performed such a cross and obtained F1 hybrid worms wich were essentially all resistant, thus suggesting that the mutation conferring resistance in the two strains involves the same gene.
Resumo:
The species x location interaction was of great importance in explaining the behaviour of genetic material. The study presented here shows, for the first time, the performance, under field conditions of the new tritordeum species, compared to wheat and triticale in a wide range of Mediterranean countries (Spain, Lebanon and Tunisia). The results obtained revealed that despite the diversity of environmental conditions, the main differences in yield were due to genotypes, especially to differences between species. The multi-local study with different growth conditions revealed important information about the water availability effect on yield. In the lowest yielding environments (Tunisia rainfed), Tritordeum and triticale yields were equivalent. However under better growth conditions (Spain), tritordeum yield was shown to be lower than wheat and triticale. Interestingly, when water limitation was extended during the pre-anthesis period, differences in tritordeum versus wheat-triticale yield rate were larger than when water stress occurred during anthesis. These variations were explained by the fact that kernel weight has been found as the limiting factor for yield determination in tritordeum, and a delay in the anthesis date may have been the cause for the low kernel weight and low yield under Mediterranean drought conditions. Such differences in yield between tritordeum and wheat or triticale could be explained by the fact that tritordeum is a relatively new species and far fewer resources have been devoted to its improvement when compared to wheat and triticale. Our results suggest that breeding efforts should be directed to an earlier anthesis date and a longer grain filling period. tritordeum proved to have possibilities to be grown under drought environments as a new crop, since its performance was quite close to wheat and triticale. Besides, it has qualitative added values that may improve farmers' income per unit land.
Resumo:
RYR1 mutations are the most common cause of structural congenital myopathies and may exhibit both dominant and recessive inheritance. Histopathological findings are variable and include central cores, multi-minicores, type 1 predominance/ uniformity, fibre type disproportion, increased internal nucleation and fatty and connective tissue. Until recently, diagnostic RYR1 sequencing was limited to mutational hotspots due to the large size of the gene. Since the introduction of full RYR1 sequencing in 2007 we have detected pathogenic mutations in 77 families: 39 had dominant inheritance and 38 recessive inheritance. In some cases with presumably recessive inheritance, only one heterozygous mutation inherited from an asymptomatic parent was identified. Of 28 dominant mutations, 6 were novel; 37 of the 59 recessive mutations were also novel. Dominant mutations were more frequently in recognized hotspot regions, while recessive mutations were distributed throughout the coding sequence. Dominant mutations were predominantly missense, whereas recessive mutations included many nonsense and splice mutations expected to result in reduced RyR1 protein. There was wide clinical variability in patients with both dominant and recessive inheritance. As a group, those with dominant mutations were generally more mildly affected than those with recessive inheritance, who had earlier onset and were weaker with more functional limitations. Extraocular muscle involvement was almost exclusively observed in the recessive group. Bulbar involvement was also more prominent in this group, resulting in a larger number requiring gastrostomy insertion. In conclusion, genomic sequencing of the entire RYR1 leads to the detection of many novel mutations, but may miss large genetic rearrangements in some cases. Assigning pathogenicity to novel mutations is often difficult and interpretation of genetic results in the context of clinical, histological and, increasingly, muscle MRI findings is essential.
Resumo:
Blood pressure is a heritable trait influenced by several biological pathways and responsive to environmental stimuli. Over one billion people worldwide have hypertension (≥140 mm Hg systolic blood pressure or ≥90 mm Hg diastolic blood pressure). Even small increments in blood pressure are associated with an increased risk of cardiovascular events. This genome-wide association study of systolic and diastolic blood pressure, which used a multi-stage design in 200,000 individuals of European descent, identified sixteen novel loci: six of these loci contain genes previously known or suspected to regulate blood pressure (GUCY1A3-GUCY1B3, NPR3-C5orf23, ADM, FURIN-FES, GOSR2, GNAS-EDN3); the other ten provide new clues to blood pressure physiology. A genetic risk score based on 29 genome-wide significant variants was associated with hypertension, left ventricular wall thickness, stroke and coronary artery disease, but not kidney disease or kidney function. We also observed associations with blood pressure in East Asian, South Asian and African ancestry individuals. Our findings provide new insights into the genetics and biology of blood pressure, and suggest potential novel therapeutic pathways for cardiovascular disease prevention.