911 resultados para moving particle tracking


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Airborne dust affects the Earth's energy balance — an impact that is measured in terms of the implied change in net radiation (or radiative forcing, in W m-2) at the top of the atmosphere. There remains considerable uncertainty in the magnitude and sign of direct forcing by airborne dust under current climate. Much of this uncertainty stems from simplified assumptions about mineral dust-particle size, composition and shape, which are applied in remote sensing retrievals of dust characteristics and dust-cycle models. Improved estimates of direct radiative forcing by dust will require improved characterization of the spatial variability in particle characteristics to provide reliable information dust optical properties. This includes constraints on: (1) particle-size distribution, including discrimination of particle subpopulations and quantification of the amount of dust in the sub-10 µm to <0.1 µm mass fraction; (2) particle composition, specifically the abundance of iron oxides, and whether particles consist of single or multi-mineral grains; (3) particle shape, including degree of sphericity and surface roughness, as a function of size and mineralogy; and (4) the degree to which dust particles are aggregated together. The use of techniques that measure the size, composition and shape of individual particles will provide a better basis for optical modelling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A key step in many numerical schemes for time-dependent partial differential equations with moving boundaries is to rescale the problem to a fixed numerical mesh. An alternative approach is to use a moving mesh that can be adapted to focus on specific features of the model. In this paper we present and discuss two different velocity-based moving mesh methods applied to a two-phase model of avascular tumour growth formulated by Breward et al. (2002) J. Math. Biol. 45(2), 125-152. Each method has one moving node which tracks the moving boundary. The first moving mesh method uses a mesh velocity proportional to the boundary velocity. The second moving mesh method uses local conservation of volume fraction of cells (masses). Our results demonstrate that these moving mesh methods produce accurate results, offering higher resolution where desired whilst preserving the balance of fluxes and sources in the governing equations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using 1D Vlasov drift-kinetic computer simulations, it is shown that electron trapping in long period standing shear Alfven waves (SAWs) provides an efficient energy sink for wave energy that is much more effective than Landau damping. It is also suggested that the plasma environment of low altitude auroral-zone geomagnetic field lines is more suited to electron acceleration by inertial or kinetic scale Alfven waves. This is due to the self-consistent response of the electron distribution function to SAWs, which must accommodate the low altitude large-scale current system in standing waves. We characterize these effects in terms of the relative magnitude of the wave phase and electron thermal velocities. While particle trapping is shown to be significant across a wide range of plasma temperatures and wave frequencies, we find that electron beam formation in long period waves is more effective in relatively cold plasma.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Enterprise Architecture (EA) has been recognised as an important tool in modern business management for closing the gap between strategy and its execution. The current literature implies that for EA to be successful, it should have clearly defined goals. However, the goals of different stakeholders are found to be different, even contradictory. In our explorative research, we seek an answer to the questions: What kind of goals are set for the EA implementation? How do the goals evolve during the time? Are the goals different among stakeholders? How do they affect the success of EA? We analysed an EA pilot conducted among eleven Finnish Higher Education Institutions (HEIs) in 2011. The goals of the pilot were gathered from three different stages of the pilot: before the pilot, during the pilot, and after the pilot, by means of a project plan, interviews during the pilot and a questionnaire after the pilot. The data was analysed using qualitative and quantitative methods. Eight distinct goals were recognised by the coding: Adopt EA Method, Build Information Systems, Business Development, Improve Reporting, Process Improvement, Quality Assurance, Reduce Complexity, and Understand the Big Picture. The success of the pilot was analysed statistically using the scale 1-5. Results revealed that goals set before the pilot were very different from those mentioned during the pilot, or after the pilot. Goals before the pilot were mostly related to expected benefits from the pilot, whereas the most important result was to adopt the EA method. Results can be explained by possibly different roles of respondents, which in turn were most likely caused by poor communication. Interestingly, goals mentioned by different stakeholders were not limited to their traditional areas of responsibility. For example, in some cases Chief Information Officers' goals were Quality Assurance and Process Improvement, whereas managers’ goals were Build Information Systems and Adopt EA Method. This could be a result of a good understanding of the meaning of EA, or stakeholders do not regard EA as their concern at all. It is also interesting to notice that regardless of the different perceptions of goals among stakeholders, all HEIs felt the pilot to be successful. Thus the research does not provide support to confirm the link between clear goals and success.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is well known that atmospheric concentrations of carbon dioxide (CO2) (and other greenhouse gases) have increased markedly as a result of human activity since the industrial revolution. It is perhaps less appreciated that natural and managed soils are an important source and sink for atmospheric CO2 and that, primarily as a result of the activities of soil microorganisms, there is a soil-derived respiratory flux of CO2 to the atmosphere that overshadows by tenfold the annual CO2 flux from fossil fuel emissions. Therefore small changes in the soil carbon cycle could have large impacts on atmospheric CO2 concentrations. Here we discuss the role of soil microbes in the global carbon cycle and review the main methods that have been used to identify the microorganisms responsible for the processing of plant photosynthetic carbon inputs to soil. We discuss whether application of these techniques can provide the information required to underpin the management of agro-ecosystems for carbon sequestration and increased agricultural sustainability. We conclude that, although crucial in enabling the identification of plant-derived carbon-utilising microbes, current technologies lack the high-throughput ability to quantitatively apportion carbon use by phylogentic groups and its use efficiency and destination within the microbial metabolome. It is this information that is required to inform rational manipulation of the plant–soil system to favour organisms or physiologies most important for promoting soil carbon storage in agricultural soil.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The (poly)phenols in ileal fluid after ingestion of raspberries were analysed by targeted and non-targeted LC-MSn approaches. Targeted approaches identified major anthocyanin and ellagitannin components at varying recoveries and with considerable inter-individual variation. Non-targeted LC-MSn analysis using an Orbitrap mass spectrometer gave exact mass MS data which was sifted using a software program to select peaks that changed significantly after supplementation. This method confirmed the recovery of the targeted components but also identified novel raspberry-specific metabolites. Some components (including ellagitannin and previously unidentified proanthocyanidin derivatives) may have arisen from raspberry seeds that survived intact in ileal samples. Other components include potential breakdown products of anthocyanins, unidentified components and phenolic metabolites formed in either the gut epithelia or after absorption into the circulatory system and efflux back into the gut lumen. The possible physiological roles of the ileal metabolites in the large bowel are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The multicomponent nonideal gas lattice Boltzmann model by Shan and Chen (S-C) is used to study the immiscible displacement in a sinusoidal tube. The movement of interface and the contact point (contact line in three-dimension) is studied. Due to the roughness of the boundary, the contact point shows "stick-slip" mechanics. The "stick-slip" effect decreases as the speed of the interface increases. For fluids that are nonwetting, the interface is almost perpendicular to the boundaries at most time, although its shapes at different position of the tube are rather different. When the tube becomes narrow, the interface turns a complex curves rather than remains simple menisci. The velocity is found to vary considerably between the neighbor nodes close to the contact point, consistent with the experimental observation that the velocity is multi-values on the contact line. Finally, the effect of three boundary conditions is discussed. The average speed is found different for different boundary conditions. The simple bounce-back rule makes the contact point move fastest. Both the simple bounce-back and the no-slip bounce-back rules are more sensitive to the roughness of the boundary in comparison with the half-way bounce-back rule. The simulation results suggest that the S-C model may be a promising tool in simulating the displacement behaviour of two immiscible fluids in complex geometry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using data from the EISCAT (European Incoherent Scatter) VHF and CUTLASS (Co-operative UK Twin- Located Auroral Sounding System) HF radars, we study the formation of ionospheric polar cap patches and their relationship to the magnetopause reconnection pulses identified in the companion paper by Lockwood et al. (2005). It is shown that the poleward-moving, high-concentration plasma patches observed in the ionosphere by EISCAT on 23 November 1999, as reported by Davies et al. (2002), were often associated with corresponding reconnection rate pulses. However, not all such pulses generated a patch and only within a limited MLT range (11:00–12:00 MLT) did a patch result from a reconnection pulse. Three proposed mechanisms for the production of patches, and of the concentration minima that separate them, are analysed and evaluated: (1) concentration enhancement within the patches by cusp/cleft precipitation; (2) plasma depletion in the minima between the patches by fast plasma flows; and (3) intermittent injection of photoionisation-enhanced plasma into the polar cap. We devise a test to distinguish between the effects of these mechanisms. Some of the events repeat too frequently to apply the test. Others have sufficiently long repeat periods and mechanism (3) is shown to be the only explanation of three of the longer-lived patches seen on this day. However, effect (2) also appears to contribute to some events. We conclude that plasma concentration gradients on the edges of the larger patches arise mainly from local time variations in the subauroral plasma, via the mechanism proposed by Lockwood et al. (2000).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A continuous band of high ion temperature, which persisted for about 8 h and zigzagged north-south across more than five degrees in latitude in the dayside (07:00– 15:00MLT) auroral ionosphere, was observed by the EISCAT VHF radar on 23 November 1999. Latitudinal gradients in the temperature of the F-region electron and ion gases (Te and Ti , respectively) have been compared with concurrent observations of particle precipitation and field-perpendicular convection by DMSP satellites, in order to reveal a physical explanation for the persistent band of high Ti , and to test the potential role of Ti and Te gradients as possible markers for the open-closed field line boundary. The north/south movement of the equatorward Ti boundary was found to be consistent with the contraction/expansion of the polar cap due to an unbalanced dayside and nightside reconnection. Sporadic intensifications in Ti , recurring on _10-min time scales, indicate that frictional heating was modulated by time-varying reconnection, and the band of high Ti was located on open flux. However, the equatorward Ti boundary was not found to be a close proxy of the open-closed boundary. The closest definable proxy of the open-closed boundary is the magnetosheath electron edge observed by DMSP. Although Te appears to be sensitive to magnetosheath electron fluxes, it is not found to be a suitable parameter for routine tracking of the open-closed boundary, as it involves case dependent analysis of the thermal balance. Finally, we have documented a region of newly-opened sunward convecting flux. This region is situated between the convection reversal boundary and the magnetosheath electron edge defining the openclosed boundary. This is consistent with a delay of several minutes between the arrival of the first (super-Alfv´enic) magnetosheath electrons and the response in the ionospheric convection, conveyed to the ionosphere by the interior Alfv´en wave. It represents a candidate footprint of the low-latitude boundary mixing layer on sunward convecting open flux

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During the interval between 8:00-9:30 on 14 January 2001, the four Cluster spacecraft were moving from the central magnetospheric lobe, through the dusk sector mantle, on their way towards intersecting the magnetopause near 15:00 MLT and 15:00 UT. Throughout this interval, the EIS-CAT Svalbard Radar (ESR) at Longyearbyen observed a series of poleward-moving transient events of enhanced F-region plasma concentration ("polar cap patches"), with a repetition period of the order of 10 min. Allowing for the estimated solar wind propagation delay of 75 ( 5) min, the interplanetary magnetic field (IMF) had a southward component during most of the interval. The magnetic footprint of the Cluster spacecraft, mapped to the ionosphere using the Tsyganenko T96 model (with input conditions prevailing during this event), was to the east of the ESR beams. Around 09:05 UT, the DMSP-F12 satellite flew over the ESR and showed a sawtooth cusp ion dispersion signature that also extended into the electrons on the equatorward edge of the cusp, revealing a pulsed magnetopause reconnection. The consequent enhanced ionospheric flow events were imaged by the SuperDARN HF backscatter radars. The average convection patterns (derived using the AMIE technique on data from the magnetometers, the EISCAT and SuperDARN radars, and the DMSP satellites) show that the associated poleward-moving events also convected over the predicted footprint of the Cluster spacecraft. Cluster observed enhancements in the fluxes of both electrons and ions. These events were found to be essentially identical at all four spacecraft, indicating that they had a much larger spatial scale than the satellite separation of the order of 600 km. Some of the events show a correspondence between the lowest energy magnetosheath electrons detected by the PEACE instrument on Cluster (10-20 eV) and the topside ionospheric enhancements seen by the ESR (at 400-700 km). We suggest that a potential barrier at the magnetopause, which prevents the lowest energy electrons from entering the magnetosphere, is reduced when and where the boundary-normal magnetic field is enhanced and that the observed polar cap patches are produced by the consequent enhanced precipitation of the lowest energy electrons, making them and the low energy electron precipitation fossil remnants of the magnetopause reconnection rate pulses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We predict the field-aligned currents around cusp ion steps produced by pulsed reconnection between the geomagnetic field and an interplanetary magnetic field (IMF) with a B-Y component that is large in magnitude. For B-Y > 0, patches of newly opened flux move westward and eastward in the Northern and Southern Hemispheres, respectively, under the influence of the magnetic curvature force. These flow directions are reversed for B-Y < 0. The speed of this longitudinal motion initially grows with elapsed time since reconnection, but then decays as the newly opened field lines straighten. We predict sheets of field-aligned current on the boundaries between the patches produced by successive reconnection pulses, associated with the difference in the speeds of their longitudinal motion. For low elapsed times since reconnection, near the equatorward edge of the cusp region where the field lines are accelerating, the field-aligned current sheets will be downward or upward in both hemispheres for positive or negative IMF B-Y, respectively. At larger elapsed times since reconnection, as events slow and evolve from the cusp into the mantle region, these field-aligned current directions will be reversed. Observations by the Polar spacecraft on August 26,1998, show the predicted upward current sheets at steps seen in the mantle region for IMF B-Y > 0. Mapped into the ionosphere, the steps coincide with poleward moving events seen by the CUTLASS HF radar. The mapped location of the largest step also coincides with a poleward moving arc seen by the UVI imager on Polar. We show that the arc is consistent with a region of upward field-aligned current that has become unstable, such that a potential drop of about 1 kV formed below the spacecraft. The importance of these observations is that they confirm that the poleward moving events, as seen by the HF radar and the UV imager, are due to pulsed magnetopause reconnection. Milan et al. [2000] noted that the great longitudinal extent of these events means that the required reconnection pulses would have contributed almost all the voltage placed across the magnetosphere at this time. The observations also show that auroral arcs can form on open field lines in response to the pulsed application of voltage at the magnetopause.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dayside poleward moving auroral forms (PMAFs) were detected between 06:30 and 07:00 UT on December 16, 1998, by the meridian scanning photometer and the all-sky camera at Ny Alesund, Svalbard. Simultaneous SuperDARN HF radar measurements permitted the study of the associated ionospheric velocity pattern. A good general agreement is observed between the location and movement of velocity enhancements (flow channels) and the PMAFs. Clear signatures of equatorward flow were detected in the vicinity of PMAFs. This flow is believed to be the signature of a return flow outside the reconnected Aux tube, as predicted by the Southwood model. The simulated signatures of this model reproduce globally the measured signatures, and differences with the experimental data can be explained by the simplifications of the model. Proposed schemes of the flow modification due to the presence of several flow channels and the modification of cusp and region 1 field-aligned currents at the time of sporadic reconnection events are shown to fit well with the observations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report high-resolution observations of the southward-IMF cusp/cleft ionosphere made on December 16th 1998 by the EISCAT (European incoherent scatter) Svalbard radar (ESR), and compare them with observations of dayside auroral luminosity, as seen at a wavelength of 630 nm by a meridian scanning photometer at Ny Alesund, and of plasma flows, as seen by the CUTLASS (co-operative UK twin location auroral sounding system) Finland HF radar. The optical data reveal a series of poleward-moving transient red-line (630 nm) enhancements, events that have been associated with bursts in the rate of magnetopause reconnection generating new open flux. The combined observations at this time have strong similarities to predictions of the effects of soft electron precipitation modulated by pulsed reconnection, as made by Davis and Lockwood (1996); however, the effects of rapid zonal flow in the ionosphere, caused by the magnetic curvature force on the newly opened field lines, are found to be a significant additional factor. In particular, it is shown how enhanced plasma loss rates induced by the rapid convection can explain two outstanding anomalies of the 630 nm transients, namely how minima in luminosity form between the poleward-moving events and how events can re-brighten as they move poleward. The observations show how cusp/cleft aurora and transient poleward-moving auroral forms appear in the ESR data and the conditions which cause enhanced 630 nm emission in the transients: they are an important first step in enabling the ESR to identify these features away from the winter solstice when supporting auroral observations are not available.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two central issues in magnetospheric research are understanding the mapping of the low-altitude ionosphere to the distant regions of the magnetsphere, and understanding the relationship between the small-scale features detected in the various regions of the ionosphere and the global properties of the magnetosphere. The high-latitude ionosphere, through its magnetic connection to the outer magnetosphere, provides an important view of magnetospheric boundaries and the physical processes occurring there. All physical manifestations of this magnetic connectivity (waves, particle precipitation, etc.), however, have non-zero propagation times during which they are convected by the large-scale magnetospheric electric field, with phenomena undergoing different convection distances depending on their propagation times. Identification of the ionospheric signatures of magnetospheric regions and phenomena, therefore, can be difficult. Considerable progress has recently been made in identifying these convection signatures in data from low- and high-altitude satellites. This work has allowed us to learn much about issues such as: the rates of magnetic reconnection, both at the dayside magnetopause and in the magnetotail; particle transport across the open magnetopause; and particle acceleration at the magnetopause and the magnetotail current sheets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we study the high-latitude plasma flow variations associated with a periodic (∼8 min) sequence of auroral forms moving along the polar cap boundary, which appear to be the most regularly occuring dayside auroral phenomenon under conditions of southward directed interplanetary magnetic field. Satellite data on auroral particle precipitation and ionospheric plasma drifts from DMSP F10 and F11 are combined with ground-based optical and ion flow measurements for January 7, 1992. Ionospheric flow measurements of 10-s resolution over the range of invariant latitudes from 71° to 76° were obtained by operating both the European incoherent scatter (EISCAT) UHF and VHF radars simultaneously. The optical site (Ny Ålesund, Svalbard) and the EISCAT radar field of view were located in the postnoon sector during the actual observations. The West Greenland magnetometers provided information about temporal variations of high-latitude convection in the prenoon sector. Satellite observations of polar cap convection in the northern and southern hemispheres show a standard two-cell pattern consistent with a prevailing negative By component of the interplanetary magnetic field. The 630.0 nm auroral forms located poleward of the persistent cleft aurora and the flow reversal boundary in the ∼1440–1540 MLT sector were observed to coincide with magnetosheath-like particle precipitation and a secondary population of higher energy ions, and they propagated eastward/tailward at speeds comparable with the convection velocity. It is shown that these optical events were accompanied by bursts of sunward (return) flow at lower latitudes in both the morning and the afternoon sectors, consistent with a modulation of Dungey cell convection. The background level of convection was low in this case (Kp =2+). The variability of the high-latitude convection may be explained as resulting from time-varying reconnection at the magnetopause. In that case this study indicates that time variations of the reconnection rate effectively modulates ionospheric convection.