947 resultados para mid-latitude storms
Resumo:
Simultaneous observations of cloud microphysical properties were obtained by in-situ aircraft measurements and ground based Radar/Lidar. Widespread mid-level stratus cloud was present below a temperature inversion (~5 °C magnitude) at 3.6 km altitude. Localised convection (peak updraft 1.5 m s−1) was observed 20 km west of the Radar station. This was associated with convergence at 2.5 km altitude. The convection was unable to penetrate the inversion capping the mid-level stratus.
The mid-level stratus cloud was vertically thin (~400 m), horizontally extensive (covering 100 s of km) and persisted for more than 24 h. The cloud consisted of supercooled water droplets and small concentrations of large (~1 mm) stellar/plate like ice which slowly precipitated out. This ice was nucleated at temperatures greater than −12.2 °C and less than −10.0 °C, (cloud top and cloud base temperatures, respectively). No ice seeding from above the cloud layer was observed. This ice was formed by primary nucleation, either through the entrainment of efficient ice nuclei from above/below cloud, or by the slow stochastic activation of immersion freezing ice nuclei contained within the supercooled drops. Above cloud top significant concentrations of sub-micron aerosol were observed and consisted of a mixture of sulphate and carbonaceous material, a potential source of ice nuclei. Particle number concentrations (in the size range 0.1
Resumo:
Sting jets are transient mesoscale jets of air that descend from the tip of the cloud head towards the top of the boundary layer in severe extratropical cyclones and can lead to damaging surface wind gusts. This recently identified jet is distinct from the well-documented jets associated with the cold and warm conveyor belts. One mechanism proposed for their development is the release of conditional symmetric instability (CSI). Here the spatial distribution and temporal evolution of several CSI diagnostics in four severe storms are analysed. A sting jet has been identified in three of these storms; for comparison, we also analysed one storm that did not have a sting jet, even though it hadmany of the apparent features of sting-jet storms. The sting-jet storms are distinct from the non-sting-jet storms by having much greater andmore extensive conditional instability (CI) and CSI. CSI is released by ascending air parcels in the cloud head in two of the sting-jet storms and by descending air parcels in the other sting-jet storm. By contrast, only weak CI to ascending air parcels is present at the cloud-head tip in the non-sting-jet storm. CSI released by descending air parcels, as diagnosed by decaying downdraught slantwise convective available potential energy (DSCAPE), is collocated with the sting jets in all three sting-jet storms and has a localisedmaximum in two of them. Consistent evolutions of saturated moist potential vorticity are found.We conclude that CSI release has a role in the generation of the sting jet, that the sting jet may be driven by the release of instability to both ascending and descending parcels, and that DSCAPE could be used as a discriminating diagnostic for the sting jet based on these four case-studies.
Resumo:
Sting jets are transient coherent mesoscale strong wind features that can cause damaging surface wind gusts in extratropical cyclones. Currently, we have only limited knowledge of their climatological characteristics. Numerical weather prediction models require enough resolution to represent slantwise motions with horizontal scales of tens of kilometres and vertical scales of just a few hundred metres to represent sting jets. Hence, the climatological characteristics of sting jets and the associated extratropical cyclones can not be determined by searching for sting jets in low-resolution datasets such as reanalyses. A diagnostic is presented and evaluated for the detection in low-resolution datasets of atmospheric regions from which sting jets may originate. Previous studies have shown that conditional symmetric instability (CSI) is present in all storms studied with sting jets, while other, rapidly developing storms of a similar character but no CSI do not develop sting jets. Therefore, we assume that the release of CSI is needed for sting jets to develop. While this instability will not be released in a physically realistic way in low-resolution models (and hence sting jets are unlikely to occur), it is hypothesized that the signature of this instability (combined with other criteria that restrict analysis to moist mid-tropospheric regions in the neighbourhood of a secondary cold front) can be used to identify cyclones in which sting jets occurred in reality. The diagnostic is evaluated, and appropriate parameter thresholds defined, by applying it to three case studies simulated using two resolutions (with CSI-release resolved in only the higher-resolution simulation).
Resumo:
This study investigated the potential application of mid-infrared spectroscopy (MIR 4,000–900 cm−1) for the determination of milk coagulation properties (MCP), titratable acidity (TA), and pH in Brown Swiss milk samples (n = 1,064). Because MCP directly influence the efficiency of the cheese-making process, there is strong industrial interest in developing a rapid method for their assessment. Currently, the determination of MCP involves time-consuming laboratory-based measurements, and it is not feasible to carry out these measurements on the large numbers of milk samples associated with milk recording programs. Mid-infrared spectroscopy is an objective and nondestructive technique providing rapid real-time analysis of food compositional and quality parameters. Analysis of milk rennet coagulation time (RCT, min), curd firmness (a30, mm), TA (SH°/50 mL; SH° = Soxhlet-Henkel degree), and pH was carried out, and MIR data were recorded over the spectral range of 4,000 to 900 cm−1. Models were developed by partial least squares regression using untreated and pretreated spectra. The MCP, TA, and pH prediction models were improved by using the combined spectral ranges of 1,600 to 900 cm−1, 3,040 to 1,700 cm−1, and 4,000 to 3,470 cm−1. The root mean square errors of cross-validation for the developed models were 2.36 min (RCT, range 24.9 min), 6.86 mm (a30, range 58 mm), 0.25 SH°/50 mL (TA, range 3.58 SH°/50 mL), and 0.07 (pH, range 1.15). The most successfully predicted attributes were TA, RCT, and pH. The model for the prediction of TA provided approximate prediction (R2 = 0.66), whereas the predictive models developed for RCT and pH could discriminate between high and low values (R2 = 0.59 to 0.62). It was concluded that, although the models require further development to improve their accuracy before their application in industry, MIR spectroscopy has potential application for the assessment of RCT, TA, and pH during routine milk analysis in the dairy industry. The implementation of such models could be a means of improving MCP through phenotypic-based selection programs and to amend milk payment systems to incorporate MCP into their payment criteria.
Resumo:
The objective of this study was to investigate the potential application of mid-infrared spectroscopy for determination of selected sensory attributes in a range of experimentally manufactured processed cheese samples. This study also evaluates mid-infrared spectroscopy against other recently proposed techniques for predicting sensory texture attributes. Processed cheeses (n = 32) of varying compositions were manufactured on a pilot scale. After 2 and 4 wk of storage at 4 degrees C, mid-infrared spectra ( 640 to 4,000 cm(-1)) were recorded and samples were scored on a scale of 0 to 100 for 9 attributes using descriptive sensory analysis. Models were developed by partial least squares regression using raw and pretreated spectra. The mouth-coating and mass-forming models were improved by using a reduced spectral range ( 930 to 1,767 cm(-1)). The remaining attributes were most successfully modeled using a combined range ( 930 to 1,767 cm(-1) and 2,839 to 4,000 cm(-1)). The root mean square errors of cross-validation for the models were 7.4(firmness; range 65.3), 4.6 ( rubbery; range 41.7), 7.1 ( creamy; range 60.9), 5.1(chewy; range 43.3), 5.2(mouth-coating; range 37.4), 5.3 (fragmentable; range 51.0), 7.4 ( melting; range 69.3), and 3.1 (mass-forming; range 23.6). These models had a good practical utility. Model accuracy ranged from approximate quantitative predictions to excellent predictions ( range error ratio = 9.6). In general, the models compared favorably with previously reported instrumental texture models and near-infrared models, although the creamy, chewy, and melting models were slightly weaker than the previously reported near-infrared models. We concluded that mid-infrared spectroscopy could be successfully used for the nondestructive and objective assessment of processed cheese sensory quality..
Resumo:
The objective of this study was to determine the potential of mid-infrared spectroscopy coupled with multidimensional statistical analysis for the prediction of processed cheese instrumental texture and meltability attributes. Processed cheeses (n = 32) of varying composition were manufactured in a pilot plant. Following two and four weeks storage at 4 degrees C samples were analysed using texture profile analysis, two meltability tests (computer vision, Olson and Price) and mid-infrared spectroscopy (4000-640 cm(-1)). Partial least squares regression was used to develop predictive models for all measured attributes. Five attributes were successfully modelled with varying degrees of accuracy. The computer vision meltability model allowed for discrimination between high and low melt values (R-2 = 0.64). The hardness and springiness models gave approximate quantitative results (R-2 = 0.77) and the cohesiveness (R-2 = 0.81) and Olson and Price meltability (R-2 = 0.88) models gave good prediction results. (c) 2006 Elsevier Ltd. All rights reserved..
Resumo:
The objective of this study was to determine the potential of mid-infrared spectroscopy in conjunction with partial least squares (PLS) regression to predict various quality parameters in cheddar cheese. Cheddar cheeses (n = 24) were manufactured and stored at 8 degrees C for 12 mo. Mid-infrared spectra (640 to 4000/cm) were recorded after 4, 6, 9, and 12 mo storage. At 4, 6, and 9 mo, the water-soluble nitrogen (WSN) content of the samples was determined and the samples were also evaluated for 11 sensory texture attributes using descriptive sensory analysis. The mid-infrared spectra were subjected to a number of pretreatments, and predictive models were developed for all parameters. Age was predicted using scatter-corrected, 1st derivative spectra with a root mean square error of cross-validation (RMSECV) of 1 mo, while WSN was predicted using 1st derivative spectra (RMSECV = 2.6%). The sensory texture attributes most successfully predicted were rubbery, crumbly, chewy, and massforming. These attributes were modeled using 2nd derivative spectra and had, corresponding RMSECV values in the range of 2.5 to 4.2 on a scale of 0 to 100. It was concluded that mid-infrared spectroscopy has the potential to predict age, WSN, and several sensory texture attributes of cheddar cheese..