929 resultados para microsatellite marker
Resumo:
Guanylyl cyclase C (GCC) has been detected only in intestinal mucosa and colon carcinoma cells of placental mammals. However, this receptor has been identified in several tissues in marsupials, and its expression has been suggested in tissues other than intestine in placental mammals. Selective expression of GCC by colorectal tumor cells in extraintestinal tissues would permit this receptor to be employed as a selective marker for metastatic disease. Thus, expression of GCC was examined in human tissues and tumors, correlating receptor function with detection by PCR. GCC was detected by ligand binding and catalytic activation in normal intestine and primary and metastatic colorectal tumors, but not in extraintestinal tissues or tumors. Similarly, PCR yielded GCC-specific amplification products with specimens from normal intestine and primary and metastatic colorectal tumors, but not from extraintestinal tissues or tumors. Northern blot analysis employing GCC-specific probes revealed an ≈4-kb transcript, corresponding to recombinant GCC, in normal intestine and primary and metastatic colorectal tumors, but not in extraintestinal tissues. Thus, GCC is selectively expressed in intestine and colorectal tumors in humans and appears to be a relatively specific marker for metastatic cancer cells in normal tissues. Indeed, PCR of GCC detected tumor cells in blood from some patients with Dukes B colorectal cancer and all patients examined with Dukes C and D colorectal cancer, but not in that from normal subjects or patients with Dukes A colon carcinoma or other nonmalignant intestinal pathologies.
Resumo:
The understanding of the mutational mechanism that generates high levels of variation at microsatellite loci lags far behind the application of these genetic markers. A phylogenetic approach was developed to study the pattern and rate of mutations at a dinucleotide microsatellite locus tightly linked to HLA-DQB1 (DQCAR). A random Japanese population (n = 129) and a collection of multiethnic samples (n = 941) were typed at the DQB1 and DQCAR loci. The phylogeny of DQB1 alleles was then reconstructed and DQCAR alleles were superimposed onto the phylogeny. This approach allowed us to group DQCAR alleles that share a common ancestor. The results indicated that the DQCAR mutation rate varies drastically among alleles within this single microsatellite locus. Some DQCAR alleles never mutated during a long period of evolutionary time. Sequencing of representative DQCAR alleles showed that these alleles lost their ability to mutate because of nucleotide substitutions that shorten the length of uninterrupted CA repeat arrays; in contrast, all mutating alleles had relatively longer perfect CA repeat sequences.
Resumo:
In the nuclear genome of Saccharomyces cerevisiae, simple, repetitive DNA sequences (microsatellites) mutate at rates much higher than nonrepetitive sequences. Most of these mutations are deletions or additions of repeat units. The yeast mitochondrial genome also contains many microsatellites. To examine the stability of these sequences, we constructed a reporter gene (arg8m) containing out-of-frame insertions of either poly(AT) or poly(GT) tracts within the coding sequence. Yeast strains with this reporter gene inserted within the mitochondrial genome were constructed. Using these strains, we showed that poly(GT) tracts were considerably less stable than poly(AT) tracts and that alterations usually involved deletions rather than additions of repeat units. In contrast, in the nuclear genome, poly(GT) and poly(AT) tracts had similar stabilities, and alterations usually involved additions rather than deletions. Poly(GT) tracts were more stable in the mitochondria of diploid cells than in haploids. In addition, an msh1 mutation destabilized poly(GT) tracts in the mitochondrial genome.
Resumo:
Recently, Y chromosome markers have begun to be used to study Native American origins. Available data have been interpreted as indicating that the colonizers of the New World carried a single founder haplotype. However, these early studies have been based on a few, mostly complex polymorphisms of insufficient resolution to determine whether observed diversity stems from admixture or diversity among the colonizers. Because the interpretation of Y chromosomal variation in the New World depends on founding diversity, it is important to develop marker systems with finer resolution. Here we evaluate the hypothesis of a single-founder Y haplotype for Amerinds by using 11 Y-specific markers in five Colombian Amerind populations. Two of these markers (DYS271, DYS287) are reliable indicators of admixture and detected three non-Amerind chromosomes in our sample. Two other markers (DYS199, M19) are single-nucleotide polymorphisms mostly restricted to Native Americans. The relatedness of chromosomes defined by these two markers was evaluated by constructing haplotypes with seven microsatellite loci (DYS388 to 394). The microsatellite backgrounds found on the two haplogroups defined by marker DYS199 demonstrate the existence of at least two Amerind founder haplotypes, one of them (carrying allele DYS199 T) largely restricted to Native Americans. The estimated age and distribution of these haplogroups places them among the founders of the New World.
Resumo:
The African trypanosome, Trypanosoma brucei, has been shown to undergo genetic exchange in the laboratory, but controversy exists as to the role of genetic exchange in natural populations. Much of the analysis to date has been derived from isoenzyme or randomly amplified polymorphic DNA data with parasite material from a range of hosts and geographical locations. These markers fail to distinguish between the human infective (T. b. rhodesiense) and nonhuman infective (T. b. brucei) “subspecies” so that parasites derived from hosts other than humans potentially contain both subspecies. To overcome some of the inherent problems with the use of such markers and diverse populations, we have analyzed a well-defined population from a discrete geographical location (Busoga, Uganda) using three recently described minisatellite markers. The parasites were primarily isolated from humans and cattle with the latter isolates further characterized by their ability to resist lysis by human serum (equivalent to human infectivity). The minisatellite markers show high levels of polymorphism, and from the data obtained we conclude that T. b. rhodesiense is genetically isolated from T. b. brucei and can be unambiguously identified by its multilocus genotype. Analysis of the genotype frequencies in the separated T. b. brucei and T. b. rhodesiense populations shows the former has an epidemic population structure whereas the latter is clonal. This finding suggests that the strong linkage disequilibrium observed in previous analyses, where human and nonhuman infective trypanosomes were not distinguished, results from the treatment of two genetically isolated populations as a single population.
Resumo:
We describe and test a Markov chain model of microsatellite evolution that can explain the different distributions of microsatellite lengths across different organisms and repeat motifs. Two key features of this model are the dependence of mutation rates on microsatellite length and a mutation process that includes both strand slippage and point mutation events. We compute the stationary distribution of allele lengths under this model and use it to fit DNA data for di-, tri-, and tetranucleotide repeats in humans, mice, fruit flies, and yeast. The best fit results lead to slippage rate estimates that are highest in mice, followed by humans, then yeast, and then fruit flies. Within each organism, the estimates are highest in di-, then tri-, and then tetranucleotide repeats. Our estimates are consistent with experimentally determined mutation rates from other studies. The results suggest that the different length distributions among organisms and repeat motifs can be explained by a simple difference in slippage rates and that selective constraints on length need not be imposed.
Von Willebrand factor propeptide as a marker of disease activity in systemic sclerosis (scleroderma)
Resumo:
In 44 consecutive patients with systemic sclerosis (SSc), plasma concentrations of von Willebrand factor (vWf) were higher than those of the vWf propeptide, but the propeptide showed less variability within patient subgroups. Higher values of the propeptide were observed in patients with early pulmonary involvement. A closer correlation of the propeptide than of vWf to biochemical markers of activity was also evident. Our results suggest that the propeptide, despite a shorter circulating half-time and lower plasma concentrations than vWf, is more useful in the assessment of disease activity in SSc.
Resumo:
We describe a novel approach, selectively amplified microsatellite (SAM) analysis, for the targeted development of informative simple sequence repeat (SSR) markers. A modified selectively amplified microsatellite polymorphic loci assay is used to generate multi-locus SSR fingerprints that provide a source of polymorphic DNA markers (SAMs) for use in genetic studies. These polymorphisms capture the repeat length variation associated with SSRs and allow their chromosomal location to be determined prior to the expense of isolating and characterising individual loci. SAMs can then be converted to locus-specific SSR markers with the design and synthesis of a single primer specific to the conserved region flanking the repeat. This approach offers a cost-efficient and rapid method for developing SSR markers for predetermined chromosomal locations and of potential informativeness. The high recovery rate of useful SSR markers makes this strategy a valuable tool for population and genetic mapping studies. The utility of SAM analysis was demonstrated by the development of SSR markers in bread wheat.
Resumo:
Allostatic load (AL) has been proposed as a new conceptualization of cumulative biological burden exacted on the body through attempts to adapt to life's demands. Using a multisystem summary measure of AL, we evaluated its capacity to predict four categories of health outcomes, 7 years after a baseline survey of 1,189 men and women age 70–79. Higher baseline AL scores were associated with significantly increased risk for 7-year mortality as well as declines in cognitive and physical functioning and were marginally associated with incident cardiovascular disease events, independent of standard socio-demographic characteristics and baseline health status. The summary AL measure was based on 10 parameters of biological functioning, four of which are primary mediators in the cascade from perceived challenges to downstream health outcomes. Six of the components are secondary mediators reflecting primarily components of the metabolic syndrome (syndrome X). AL was a better predictor of mortality and decline in physical functioning than either the syndrome X or primary mediator components alone. The findings support the concept of AL as a measure of cumulative biological burden.
Resumo:
In vivo assessment of gene expression is desirable to obtain information on the extent and duration of transduction of tissue after gene delivery. We have developed an in vivo, potentially noninvasive, method for detecting virally mediated gene transfer to the liver. The method employs an adenoviral vector carrying the gene for the brain isozyme of murine creatine kinase (CK-B), an ATP-buffering enzyme expressed mainly in muscle and brain but absent from liver, kidney, and pancreas. Gene expression was monitored by 31P magnetic resonance spectroscopy (MRS) using the product of the CK enzymatic reaction, phosphocreatine, as an indicator of transfection. The vector was administered into nude mice by tail vein injection, and exogenous creatine was administered in the drinking water and by i.p. injection of 2% creatine solution before 31P MRS examination, which was performed on surgically exposed livers. A phosphocreatine resonance was detected in livers of mice injected with the vector and was absent from livers of control animals. CK expression was confirmed in the injected animals by Western blot analysis, enzymatic assays, and immunofluorescence measurements. We conclude that the syngeneic enzyme CK can be used as a marker gene for in vivo monitoring of gene expression after virally mediated gene transfer to the liver.
Resumo:
A method was developed to perform real-time analysis of cytosolic pH of arbuscular mycorrhizal fungi in culture using dye and ratiometric measurements (490/450 nm excitations). The study was mainly performed using photometric analysis, although some data were confirmed using image analysis. The use of nigericin allowed an in vivo calibration. Experimental parameters such as loading time and concentration of the dye were determined so that pH measurements could be made for a steady-state period on viable cells. A characteristic pH profile was observed along hyphae. For Gigaspora margarita, the pH of the tip (0–2 μm) was typically 6.7, increased sharply to 7.0 behind this region (9.5 μm), and decreased over the next 250 μm to a constant value of 6.6. A similar pattern was obtained for Glomus intraradices. The pH profile of G. margarita germ tubes was higher when cultured in the presence of carrot (Daucus carota) hairy roots (nonmycorrhizal). Similarly, extraradical hyphae of G. intraradices had a higher apical pH than the germ tubes. The use of a paper layer to prevent the mycorrhizal roots from being in direct contact with the medium selected hyphae with an even higher cytosolic pH. Results suggest that this method could be useful as a bioassay for studying signal perception and/or H+ cotransport of nutrients by arbuscular mycorrhizal hyphae.
Resumo:
Olfactory marker protein (OMP) is an abundant, phylogentically conserved, cytoplasmic protein of unknown function expressed almost exclusively in mature olfactory sensory neurons. To address its function, we generated OMP-deficient mice by gene targeting in embryonic stem cells. We report that these OMP-null mice are compromised in their ability to respond to odor stimull, providing insight to OMP function. The maximal electroolfactogram response of the olfactory neuroepithelium to several odorants was 20-40% smaller in the mutants compared with controls. In addition, the onset and recovery kinetics following isoamyl acetate stimulation are prolonged in the null mice. Furthermore, the ability of the mutants to respond to the second odor pulse of a pair is impaired, over a range of concentrations, compared with controls. These results imply that neural activity directed toward the olfactory bulb is also reduced. The bulbar phenotype observed in the OMP-null mouse is consistent with this hypothesis. Bulbar activity of tyrosine hydroxylase, the rate limiting enzyme of catecholamine biosynthesis, and content of the neuropeptide cholecystokinin are reduced by 65% and 50%, respectively. This similarity to postsynaptic changes in gene expression induced by peripheral olfactory deafferentation or naris blockade confirms that functional neural activity is reduced in both the olfactory neuroepithelium and the olfactory nerve projection to the bulb in the OMP-null mouse. These observations provide strong support for the conclusion that OMP is a novel modulatory component of the odor detection/signal transduction cascade.
Resumo:
Replication errors (RERs) were initially identified in hereditary nonpolyposis colon cancer and other tumors of Lynch syndrome II. Mutations in genes involved in mismatch repair give rise to a mutator phenotype, resulting in RERs. The mutator phenotype is thought to predispose to malignant transformation. Here we show that in the embryonal form of childhood rhabdomyosarcoma, RERs also occur, but in contrast to hereditary nonpolyposis colon cancer, only a subset of the microsatellite loci analyzed show RERs. The occurrence of RERs is strongly correlated with increased fractional allelic loss (P < 0.001), suggesting that the occurrence of RERs is a secondary phenomenon in rhabdomyosarcoma. Coincidental loss of genes involved in mismatch repair, possibly due to their proximity to tumor suppressor genes involved in tumor progression of embryonal form of childhood rhabdomyosarcoma, could explain the observed phenomenon.
Resumo:
Microsatellites are tandem repeat sequences abundant in the genomes of higher eukaryotes and hitherto considered as "junk DNA." Analysis of a human genome representative data base (2.84 Mb) reveals a distinct juxtaposition of A-rich microsatellites and retroposons and suggests their coevolution. The analysis implies that most microsatellites were generated by a 3'-extension of retrotranscripts, similar to mRNA polyadenylylation, and that they serve in turn as "retroposition navigators," directing the retroposons via homology-driven integration into defined sites. Thus, they became instrumental in the preservation and extension of primordial genomic patterns. A role is assigned to these reiterating A-rich loci in the higher-order organization of the chromatin. The disease-associated triplet repeats are mostly found in coding regions and do not show an association with retroposons, constituting a unique set within the family of microsatellite sequences.