967 resultados para mesh: Neuroscience
Resumo:
Collagen nerve guides are used clinically for peripheral nerve defects, but their use is generally limited to lesions up to 3 cm. In this study we combined collagen conduits with cells as an alternative strategy to support nerve regeneration over longer gaps. In vitro cell adherence to collagen conduits (NeuraGen(®) nerve guides) was assessed by scanning electron microscopy. For in vivo experiments, conduits were seeded with either Schwann cells (SC), SC-like differentiated bone marrow-derived mesenchymal stem cells (dMSC), SC-like differentiated adipose-derived stem cells (dASC) or left empty (control group), conduits were used to bridge a 1cm gap in the rat sciatic nerve and after 2-weeks immunohistochemical analysis was performed to assess axonal regeneration and SC infiltration. The regenerative cells showed good adherence to the collagen walls. Primary SC showed significant improvement in distal stump sprouting. No significant differences in proximal regeneration distances were noticed among experimental groups. dMSC and dASC-loaded conduits showed a diffuse sprouting pattern, while SC-loaded showed an enhanced cone pattern and a typical sprouting along the conduits walls, suggesting an increased affinity for the collagen type I fibrillar structure. NeuraGen(®) guides showed high affinity of regenerative cells and could be used as efficient vehicle for cell delivery. However, surface modifications (e.g. with extracellular matrix molecule peptides) of NeuraGen(®) guides could be used in future tissue-engineering applications to better exploit the cell potential.
Resumo:
Improvement of nerve regeneration and functional recovery following nerve injury is a challenging problem in clinical research. We have already shown that following rat sciatic nerve transection, the local administration of triiodothyronine (T3) significantly increased the number and the myelination of regenerated axons. Functional recovery is a sum of the number of regenerated axons and reinnervation of denervated peripheral targets. In the present study, we investigated whether the increased number of regenerated axons by T3-treatment is linked to improved reinnervation of hind limb muscles. After transection of rat sciatic nerves, silicone or biodegradable nerve guides were implanted and filled with either T3 or phosphate buffer solution (PBS). Neuromuscular junctions (NMJs) were analyzed on gastrocnemius and plantar muscle sections stained with rhodamine alpha-bungarotoxin and neurofilament antibody. Four weeks after surgery, most end-plates (EPs) of operated limbs were still denervated and no effect of T3 on muscle reinnervation was detected at this stage of nerve repair. In contrast, after 14 weeks of nerve regeneration, T3 clearly enhanced the reinnervation of gastrocnemius and plantar EPs, demonstrated by significantly higher recovery of size and shape complexity of reinnervated EPs and also by increased acetylcholine receptor (AChRs) density on post synaptic membranes compared to PBS-treated EPs. The stimulating effect of T3 on EP reinnervation is confirmed by a higher index of compound muscle action potentials recorded in gastrocnemius muscles. In conclusion, our results provide for the first time strong evidence that T3 enhances the restoration of NMJ structure and improves synaptic transmission.
Resumo:
Phlebotomine sand flies are often captured with human bait and/or light traps, either with or without an animal bait. More recently, synthetic attractants have been used as bait in traps to improve the capture of phlebotomine sand flies as well as other insects of medical and veterinary importance. The aim of the present study was to evaluate the effects of the kairomone 1-octen-3-ol (octenol) and the synthetic human odor BG-Mesh LureTM (BGML - lactic acid, caproic acid and ammonia) baited in modified CDC light traps on the capture of phlebotomine sand flies. The experiments followed the 5x5 Latin square design. Among the species caught, Lutzomyia intermedia apparently presented a dose-dependent response to octenol. The response obtained with the BGML, alone or in combination with octenol (5 mg/h), indicated some degree of attractiveness of these baits to different phlebotomine sand fly species. Octenol seems to be more attractive to L. intermedia than to Lutzomyia longipalpis, while the BGML presented a higher success in capturing L. longipalpis. When the components of the BGML were used separately, there was no increase in catching the female of L. intermedia. Apparently, there was no synergistic effect between the octenol and the BGML. In conclusion, the octenol and the BGML were demonstrated to be possible baits to attract some phlebotomine sand fly species.
Resumo:
Transcranial Magnetic Stimulation (TMS) is a technic wich allows Neuroscience researchers to disrupt or improve the normal brain activity in a strategic and focalized cortical areas. Our present work using TMS is focused on research the role of Anterior Cingolate Cortex (ACC) to discover its causal implications over autoreferencial judgments of own behaviour using healthy controls.If our hypothesis is confirmed and ACC has a keyrole in those autoreferential judgements; new research lines and stimulation techniques could strenghten to improve quality of life and feelings of overcoming to thousands of mental health patients and neurodegenerative.
Resumo:
In Huntington's disease (HD), the expansion of polyglutamine (polyQ) repeats at the N terminus of the ubiquitous protein huntingtin (htt) leads to neurodegeneration in specific brain areas. Neurons degenerating in HD develop synaptic dysfunctions. However, it is unknown whether mutant htt impacts synaptic function in general. To investigate that, we have focused on the nerve terminals of motor neurons that typically do not degenerate in HD. Here, we have studied synaptic transmission at the neuromuscular junction of transgenic mice expressing a mutant form of htt (R6/1 mice). We have found that the size and frequency of miniature endplate potentials are similar in R6/1 and control mice. In contrast, the amplitude of evoked endplate potentials in R6/1 mice is increased compared to controls. Consistent with a presynaptic increase of release probability, synaptic depression under high-frequency stimulation is higher in R6/1 mice. In addition, no changes were detected in the size and dynamics of the recycling synaptic vesicle pool. Moreover, we have found increased amounts of the synaptic vesicle proteins synaptobrevin 1,2/VAMP 1,2 and cysteine string protein-α, and the SNARE protein SNAP-25, concomitant with normal levels of other synaptic vesicle markers. Our results reveal that the transgenic expression of a mutant form of htt leads to an unexpected gain of synaptic function. That phenotype is likely not secondary to neurodegeneration and might be due to a primary deregulation in synaptic protein levels. Our findings could be relevant to understand synaptic toxic effects of proteins with abnormal polyQ repeats.
Resumo:
The plasticity of mature oligodendrocytes was studied in aggregating brain cell cultures at the period of maximal expression of myelin marker proteins. The protein kinase C (PKC)-activating tumor promoters mezerein and phorbol 12-myristate 13-acetate (PMA), but not the inactive phorbol ester analog 4alpha-PMA, caused a pronounced decrease of myelin basic protein (MBP) content and 2',3'-cyclic nucleotide 3'-phosphohydrolase (CNP) activity. In contrast, myelin/oligodendrocyte protein (MOG) content was affected relatively little. Northern blot analyses showed a rapid reduction of MBP and PLP gene expression induced by mezerein, and both morphological and biochemical findings indicate a drastic loss of compact myelin. During the acute phase of demyelination, only a relatively small increase in cell death was perceptible by in situ end labeling and in situ nick translation. Basic fibroblast growth factor (bFGF) also reduced the levels of the oligodendroglial differentiation markers and enhanced the demyelinating effects of the tumor promoters. The present results suggest that PKC activation resulted in severe demyelination and partial loss of the oligodendrocyte-differentiated phenotype.
Resumo:
Astrocytes actively participate in synaptic integration by releasing transmitter (glutamate) via a calcium-regulated, exocytosis-like process. Here we show that this process follows activation of the receptor CXCR4 by the chemokine stromal cell-derived factor 1 (SDF-1). An extraordinary feature of the ensuing signaling cascade is the rapid extracellular release of tumor necrosis factor-alpha (TNFalpha). Autocrine/paracrine TNFalpha-dependent signaling leading to prostaglandin (PG) formation not only controls glutamate release and astrocyte communication, but also causes their derangement when activated microglia cooperate to dramatically enhance release of the cytokine in response to CXCR4 stimulation. We demonstrate that altered glial communication has direct neuropathological consequences and that agents interfering with CXCR4-dependent astrocyte-microglia signaling prevent neuronal apoptosis induced by the HIV-1 coat glycoprotein, gp120IIIB. Our results identify a new pathway for glia-glia and glia-neuron communication that is relevant to both normal brain function and neurodegenerative diseases.
Resumo:
Trimethyltin (TMT) is a neurotoxicant known to induce early microglial activation. The present study was undertaken to investigate the role played by these microglial cells in the TMT-induced neurotoxicity. The effects of TMT were investigated in monolayer cultures of isolated microglia or in neuron-enriched cultures and in neuron-microglia and astrocyte-microglia cocultures. The end points used were morphological criteria; evaluation of cell death and cell proliferation; and measurements of tumor necrosis factor-alpha (TNF-alpha), interleukin-6 (IL-6), and nitric oxide (NO) release in culture supernatant. The results showed that, in cultures of microglia, TMT (10(-6) M) caused, after a 5-day treatment, an increased release of TNF-alpha, without affecting microglial shape or cell viability. When microglia were cocultured with astrocytes, TNF-alpha release was decreased to undetectable levels. In contrast, in neuron-microglia cocultures, TNF-alpha levels were found to increase at lower concentrations of TMT (i.e., 10(-8) M). Moreover, at 10(-6) M of TMT, microglia displayed further morphological activation, as suggested by process retraction and by decrease in cell size. No morphological activation was observed in cultures of isolated microglial cells and in astrocyte-microglia cocultures. With regard to neurons, 10(-6) M of TMT induced about 30% of cell death, when applied to neuron-enriched cultures, whereas close to 100% of neuronal death was observed in neuron-microglia cocultures. In conclusion, whereas astrocytes may rather dampen the microglial activation by decreasing microglial TNF-alpha production, neuronal-microglial interactions lead to enhanced microglial activation. This microglial activation, in turn, exacerbates the neurotoxic effects of TMT. TNF-alpha may play a major role in such cell-cell communications.
Resumo:
Inflammatory mediators induce neuropeptide release from nociceptive nerve endings and cell bodies, causing increased local blood flow and vascular leakage resulting in edema. Neuropeptide release from sensory neurons depends on an increase in intracellular Ca2+ concentration. In this study we investigated the role of two types of pH sensors in acid-induced Ca2+ entry and neuropeptide release from dorsal root ganglion (DRG) neurons. The transient receptor potential vanilloid 1 channel (TRPV1) and acid-sensing ion channels (ASICs) are both H+-activated ion channels present in these neurons, and are therefore potential pH sensors for this process. We demonstrate with in situ hybridization and immunocytochemistry that TRPV1 and several ASIC subunits are co-expressed with neuropeptides in DRG neurons. Activation of ASICs and of TRPV1 led to an increase in intracellular Ca2+ concentration. While TRPV1 has a high Ca2+ permeability and allows direct Ca2+ entry when activated, we show here that ASICs of DRG neurons mediate Ca2+ entry mostly by depolarization-induced activation of voltage-gated Ca2+ channels and only to a small extent via the pore of Ca2+-permeable ASICs. Extracellular acidification led to release of the neuropeptide calcitonin gene-related peptide from DRG neurons. The pH dependence and the pharmacological profile indicated that TRPV1, but not ASICs, induced neuropeptide secretion. In conclusion, this study shows that although both TRPV1 and ASICs mediate Ca2+ influx, TRPV1 is the principal sensor for acid-induced neuropeptide secretion from sensory neurons.
Resumo:
BACKGROUND Cognitive impairment is a common feature in multiple sclerosis (MS) patients and occurs in 60% of all cases. Unfortunately, neurological examination does not always agree with the neuropsychological evaluation in determining the cognitive profile of the patient. On the other hand, psychophysiological techniques such as event-related potentials (ERPs) can help in evaluating cognitive impairment in different pathologies. Behavioural responses and EEG signals were recorded during the experiment in three experimental groups: 1) a relapsing-remitting group (RRMS), 2) a benign multiple sclerosis group (BMS) and 3) a Control group. The paradigm employed was a spatial attention task with central cues (Posner experiment). The main aim was to observe the differences in the performance (behavioural variables) and in the latency and amplitude of the ERP components among these groups. RESULTS Our data indicate that both MS groups showed poorer task performance (longer reaction times and lower percentage of correct responses), a latency delay for the N1 and P300 component, and a different amplitude for the frontal N1. Moreover, the deficit in the BMS group, indexed by behavioural and pyschophysiological variables, was more pronounced compared to the RRMS group. CONCLUSION The present results suggest a cognitive impairment in the information processing in all of these patients. Comparing both pathological groups, cognitive impairment was more accentuated in the BMS group compared to the RMSS group. This suggests a silent deterioration of cognitive skills for the BMS that is not usually treated with pharmacological or neuropsychological therapy.
Resumo:
The Andalusian Public Health System (Sistema Sanitario Público de Andalucía -SSPA) Repository is the open environment where all the scientific output generated by the SSPA professionals, resulting from their medical care, research and administrative activities, is comprehensively collected and managed. This repository possesses special features which determined its development: the SSPA organization and its purpose as a health institution, the specific sets of documents that it generates and the stakeholders involved in it. The repository uses DSpace 1.6.2, to which several changes were implemented in order to achieve the SSPA initial goals and requirements. The main changes were: the addition of specific qualifiers to the Metadata Dublin Core scheme, the modification of the submission form, the integration of the MeSH Thesaurus as controlled vocabulary and the optimization of the advanced search tool. Another key point during the setting up of the repository was the initial batch ingest of the documents.
Resumo:
Public concern on mental health has noticeably increased given the high prevalence of neuropsychiatric disorders. Cognition and emotionality are the most affected functions in neuropsychiatric disorders, i.e., anxiety disorders, depression, and schizophrenia. In this review, most relevant literature on the role of the endocannabinoid (eCB) system in neuropsychiatric disorders will be presented. Evidence from clinical and animal studies is provided for the participation of CB1 and CB2 receptors (CB1R and CB2R) in the above mentioned neuropsychiatric disorders. CBRs are crucial in some of the emotional and cognitive impairments reported, although more research is required to understand the specific role of the eCB system in neuropsychiatric disorders. Cannabidiol (CBD), the main non-psychotropic component of the Cannabis sativa plant, has shown therapeutic potential in several neuropsychiatric disorders. Although further studies are needed, recent studies indicate that CBD therapeutic effects may partially depend on facilitation of eCB-mediated neurotransmission. Last but not least, this review includes recent findings on the role of the eCB system in eating disorders. A deregulation of the eCB system has been proposed to be in the bases of several neuropsychiatric disorders, including eating disorders. Cannabis consumption has been related to the appearance of psychotic symptoms and schizophrenia. In contrast, the pharmacological manipulation of this eCB system has been proposed as a potential strategy for the treatment of anxiety disorders, depression, and anorexia nervosa. In conclusion, the eCB system plays a critical role in psychiatry; however, detrimental consequences of manipulating this endogenous system cannot be underestimated over the potential and promising perspectives of its therapeutic manipulation.
Resumo:
The orexin/hypocretin (Orx/Hcrt) system has long been considered to regulate a wide range of physiological processes, including feeding, energy metabolism, and arousal. More recently, concordant observations have demonstrated an important role for these peptides in the reinforcing properties of most drugs of abuse. Orx/Hcrt neurons arise in the lateral hypothalamus (LH) and project to all brain structures implicated in the regulation of arousal, stress, and reward. Although Orx/Hcrt neurons have been shown to massively project to the paraventricular nucleus of the thalamus (PVT), only recent evidence suggested that the PVT may be a key relay of Orx/Hcrt-coded reward-related communication between the LH and both the ventral and dorsal striatum. While this thalamic region was not thought to be part of the "drug addiction circuitry," an increasing amount of evidence demonstrated that the PVT-particularly PVT Orx/Hcrt transmission-was implicated in the modulation of reward function in general and several aspects of drug-directed behaviors in particular. The present review discusses recent findings that suggest that maladaptive recruitment of PVT Orx/Hcrt signaling by drugs of abuse may promote persistent compulsive drug-seeking behavior following a period of protracted abstinence and as such may represent a relevant target for understanding the long-term vulnerability to drug relapse after withdrawal.
Resumo:
Un protocole de tests sur labyrinthe radial permettant d'évaluer la navigation spatial chez l'homme a été réalisé. Ces tests sur labyrinthe radial sont basés sur le protocole utilisé sur l'animal modèle de schizophrénie dans le CNP (Centre de neuroscience psychiatrique) de Lausanne. Les recherches actuelles du CNP ont montré un déficit dans les capacités d'orientation spatiale de ces animaux [13]. Ainsi notre méthodologie consistera à tester des sujets humains dans des tâches de labyrinthe afin d'étudier de la manière la plus équivalente les différents déficits observés dans la pathologie humaine et dans le rat modèle. Cette démarche est à la base d'une approche translationnelle qui combine recherches cliniques et expérimentales. Le travail expérimental a été mené sur deux dispositifs analogues. a) «radial au doigt», ensemble de petits canaux qui peuvent être explorés par le doigt, yeux ouverts ou fermés et dans lesquels des textures différentes tapissent chaque bras. b) «radial sur écran tactile», deux labyrinthes qui comparent deux types d'indice locale, couleurs différentes ou patrons noir-blanc. Dans les deux dispositifs a été prévu une série de tests permettant d'évaluer la mémorisation des indices utilisés en les supprimant temporairement où en les mettant en contradiction. La première perturbation a pour but de tester l'importance du référentiel locale par une rotation de 90° du labyrinthe. La permutation des bras lors d'un dernier essai permet d'induire une situation ou les informations ont été soit correctes spatialement mais incorrectes localement (texture) soit inversement. Ces perturbations des informations sensorielles qui sont fournies au sujet, permettent d'observer les systèmes de repérage et leur poids relatif dans la construction d'un système de référence durant la navigation spatiale. Les résultats du labyrinthe radial au doigt montrent que dans les conditions utilisant les informations visuelles les participants sont sensiblement plus performants. Il est apparu que les informations visuelles prédominent sur les informations proprioceptives et tactiles. Ainsi dans la condition intégrant informations visuospatiales, proprioceptives et tactiles, les sujets basent plus fortement leur navigation spatiale sur les indices visuelles soit locale soit spatiale. Dans cette condition une différence significative de stratégie entre hommes et femmes est apparue. Les hommes se basent majoritairement sur des indices spatiaux tandis que les femmes préfèrent les indices locaux. En présence d'informations tactiles et proprioceptives mais en absence de la vision, les participants utilisent les références spatiale et locale complémentairement sans avoir un système prédominant. Alors que si uniquement les informations proprioceptives sont présentes, les sujets utilisent un système de référence spatiale (globale). Le labyrinthe radial sur écran tactile indique une différence de système de référence selon l'indice local employé. Les couleurs, étant des forts indices locaux, vont favoriser un système de référence local. Au contraire les patrons noirs-blancs sont des indices visiblement très complexes et difficiles à mémoriser qui vont pousser les sujets à utiliser une stratégie de référence spatiale.