1000 resultados para meridian surfaces


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A facile, two-step method for chemically attaching single-stranded DNA to graphitic surfaces, represented here by carbon nanotubes, is reported. In the first step, an azide-containing compound, N-5-azido-nitrobenzoyloxy succinimide (ANB-NOS), is used to form photo-adducts on the graphitic surfaces in a solid-state photochemical reaction, resulting in active ester groups being oriented for the subsequent reactions. In the second step, pre-synthesized DNA strands bearing a terminal amine group are coupled in an aqueous solution with the active esters on the photo-adducts. The versatility of the method is demonstrated by attaching pre-synthesized DNA to surfaces of carbon nanotubes in two platforms—as vertically-aligned multi-walled carbon nanotubes on a solid support and as tangled single-walled carbon nanotubes in mats. The reaction products at various stages were characterized by x-ray photoelectron spectroscopy. Two different assays were used to check that the DNA strands attached to the carbon nanotubes were able to bind their partner strands with complementary base sequences. The first assay, using partner DNA strands tethered to gold nanoparticles, enabled the sites of DNA attachment to the carbon nanotubes to be identified in TEM images. The second assay, using radioactively labelled partner DNA strands, quantified the density of functional DNA strands attached to the carbon nanotubes. The diversity of potential applications for these DNA-modified carbon-nanotube platforms is exemplified here by the successful use of a DNA-modified single-walled carbon-nanotube mat as an electrode for the specific detection of metal ions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a newly designed electrochemical surface forces apparatus (EC-SFA) that allows control and measurement of surface potentials and interfacial electrochemical reactions with simultaneous measurement of normal interaction forces (with nN resolution), friction forces (with μN resolution), and distances (with Å resolution) between apposing surfaces. We describe three applications of the developed EC-SFA and discuss the wide-range of potential other applications. In particular, we describe measurements of (1) force–distance profiles between smooth and rough gold surfaces and apposing self-assembled monolayer-covered smooth mica surfaces; (2) the effective changing thickness of anodically growing oxide layers with Å-accuracy on rough and smooth surfaces; and (3) friction forces evolving at a metal–ceramic contact, all as a function of the applied electrochemical potential. Interaction forces between atomically smooth surfaces are well-described using DLVO theory and the Hogg–Healy–Fuerstenau approximation for electric double layer interactions between dissimilar surfaces, which unintuitively predicts the possibility of attractive double layer forces between dissimilar surfaces whose surface potentials have similar sign, and repulsive forces between surfaces whose surface potentials have opposite sign. Surface roughness of the gold electrodes leads to an additional exponentially repulsive force in the force–distance profiles that is qualitatively well described by an extended DLVO model that includes repulsive hydration and steric forces. Comparing the measured thickness of the anodic gold oxide layer and the charge consumed for generating this layer allowed the identification of its chemical structure as a hydrated Au(OH)3 phase formed at the gold surface at high positive potentials. The EC-SFA allows, for the first time, one to look at complex long-term transient effects of dynamic processes (e.g., relaxation times), which are also reflected in friction forces while tuning electrochemical surface potentials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of nanometer anatase TiO2 was investigated on the photocatalytic degradation of phenanthrene on soil surfaces under a variety of conditions. After being spiked with phenanthrene, soil samples loaded with different amounts of TiO2 (0 wt.%, 1 wt.%, 2 wt.%, 3 wt.%, and 4 wt.%) were exposed to UV-light irradiation for 25 hr. The results indicated that the photocatalytic degradation of phenanthrene followed the pseudo first-order kinetics. TiO2 significantly accelerated the degradation of phenanthrene with the half-life reduced from 45.90 to 31.36 hr for TiO2 loading of 0 wt.% and 4 wt.%, respectively. In addition, the effects of H2O2, light intensity and humic acid on the degradation of phenanthrene were investigated. The degradation of phenanthrene increased with the concentration of H2O2, light intensity and the concentration of humic acids. It has been demonstrated that the photocatalytic method in the presence of nanometer anatase TiO2 was a very promising technology for the treatments of soil polluted with organic substances in the future.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sensitization of 5xxx series Al alloys involving precipitation of β phase (Mg2Al3) at grain boundaries was studied for different exposure times at 100°C upon AA5083-H131 (UNS A95083). In this work, we reveal that fracture surfaces prepared by liquid gallium embrittlement can yield a quantification of grain boundary β phase with significant statistics on β phase size and spacing. This information is a necessary first step toward development of quantitative damage models to describe inter-granular corrosion (IGC) and stress corrosion (IGSCC).

Relevância:

20.00% 20.00%

Publicador: