869 resultados para membrane contactor
Resumo:
Kinetoplastids are defined by the unique organization of their mitochondrial DNA (kDNA). It forms a highly concatenated DNA network that is linked to the basal body of the flagellum by the tripartite attachment complex (TAC). The TAC encompasses intra and extramitochondrial filaments and a highly differentiated region of the two mitochondrial membranes. Here we identify and characterize a mitochondrial outer membrane protein of Trypanosoma brucei that is predominantly localized in the TAC. The protein is essential for growth in both life cycle stages. Immunofluorescence shows that ablation of the protein does not affect kDNA replication but abolishes the segregation of the replicated kDNA network causing rapid loss of kDNA. Besides its role in kDNA maintenance in vivo and in vitro experiments show that the protein is involved in mitochondrial protein import and that it interacts with a recently discovered protein import factor. RNAi experiments in a T. brucei cell line in which the kDNA is dispensable suggest that the essential function is linked to kDNA maintenance. Bioinformatic analysis shows that the studied outer membrane protein has beta-barrel topology and that it belongs to the mitochondrial porin family comprising VDAC, Tom40 and Mdm10. Interestingly, Mdm10 has so far only been found in yeast. Its function in protein import and mitochondrial DNA maintenance suggests that the protein in our study is the functional homologue of Mdm10. Thus, the TAC – a defining structure of Kinetoplastids – contains a conserved protein which in yeast and trypanosomes performs the same function. Our study therefore provides an example that trypanosomal biology, rather than being unique, often simply represents a more extreme manifestation of a conserved biological concept.
Resumo:
OBJECTIVE To measure concentrations of nitric oxide metabolites (nitrite-nitrate [NOt]) in cartilage, synovial membrane, and cranial cruciate ligament (CCL) in dogs and evaluate associations with osteoarthritis in dogs with CCL rupture. ANIMALS 46 dogs with CCL rupture and 54 control dogs without joint disease. PROCEDURE Tissue specimens for histologic examination and explant culture were harvested during surgery in the CCL group or immediately after euthanasia in the control group; NOt concentrations were measured in supernatant of explant cultures and compared among dogs with various degrees of osteoarthritis and between dogs with and without CCL rupture. RESULTS Osteoarthritic cartilage had significantly higher NOt concentration (1,171.6 nmol/g) than did healthy cartilage (491.0 nmol/g); NOt concentration was associated with severity of macroscopic and microscopic lesions. Synovial membrane NOt concentration did not differ between dogs with and without CCL rupture. Ruptured CCL produced less NOt than did intact ligaments. In control dogs, NOt concentrations were similar for intact ligaments (568.1 nmol/g) and articular cartilage (491.0 nmol/g). Synthesis of NOt was inhibited substantially by coincubation with inhibitors. CONCLUSIONS AND CLINICAL RELEVANCE Results suggest that NOt in canine joint tissues originates from the inducible nitric oxide synthase pathway. Nitric oxide metabolite production in cartilage was greater in dogs with osteoarthritis than in healthy dogs and was associated with lesion severity, suggesting that nitric oxide inhibitors may be considered as a treatment for osteoarthritis. The CCL produces substantial concentrations of NOt; the importance of this finding is unknown.
Resumo:
CASPARIAN STRIP MEMBRANE DOMAIN PROTEINS (CASPs) are four-membrane-span proteins that mediate the deposition of Casparian strips in the endodermis by recruiting the lignin polymerization machinery. CASPs show high stability in their membrane domain, which presents all the hallmarks of a membrane scaffold. Here, we characterized the large family of CASP-like (CASPL) proteins. CASPLs were found in all major divisions of land plants as well as in green algae; homologs outside of the plant kingdom were identified as members of the MARVEL protein family. When ectopically expressed in the endodermis, most CASPLs were able to integrate the CASP membrane domain, which suggests that CASPLs share with CASPs the propensity to form transmembrane scaffolds. Extracellular loops are not necessary for generating the scaffold, since CASP1 was still able to localize correctly when either one of the extracellular loops was deleted. The CASP first extracellular loop was found conserved in euphyllophytes but absent in plants lacking Casparian strips, an observation that may contribute to the study of Casparian strip and root evolution. In Arabidopsis (Arabidopsis thaliana), CASPL showed specific expression in a variety of cell types, such as trichomes, abscission zone cells, peripheral root cap cells, and xylem pole pericycle cells.
Resumo:
A 14-kDa outer membrane protein (OMP) was purified from Actinobacillus pleuro-pneumoniae serotype 2. The protein strongly reacts with sera from pigs experimentally or naturally infected with any of the 12 serotypes of A. pleuropneumoniae. The gene encoding this protein was isolated from a gene library of A. pleuropneumoniae serotype 2 reference strain by immunoscreening. Expression of the cloned gene in Escherichia coli revealed that the protein is also located in the outer membrane fraction of the recombinant host. DNA sequence analysis of the gene reveals high similarity of the protein's amino acid sequence to that of the E. coli peptidoglycan-associated lipoprotein PAL, to the Haemophilus influenzae OMP P6 and to related proteins of several other Gram-negative bacteria. We have therefore named the 14-kDa protein PalA, and its corresponding gene, palA. The 20 amino-terminal amino acid residues of PalA constitute a signal sequence characteristic of membrane lipoproteins of prokaryotes with a recognition site for the signal sequence peptidase II and a sorting signal for the final localization of the mature protein in the outer membrane. The DNA sequence upstream of palA contains an open reading frame which is highly similar to the E. coli tolB gene, indicating a gene cluster in A. pleuropneumoniae which is very similar to the E. coli tol locus. The palA gene is conserved and expressed in all A. pleuropneumoniae serotypes and in A. lignieresii. A very similar palA gene is present in A. suis and A. equuli.
Resumo:
Eukaryotic cells have developed repair mechanisms, which allow them to reseal their membrane in order to prevent the efflux of cytoplasmic constituents and the uncontrolled influx of calcium. After injury, the Ca(2+)-concentration gradient fulfils a dual function: it provides guidance cues for the repair machinery and directly activates the molecules, which have a repair function. Depending on the nature of injury, the morphology of the cell and the severity of injury, the membrane resealing can be effected by lysosomal exocytosis, microvesicle shedding or a combination of both. Likewise, exocytosis is often followed by the endocytic uptake of lesions. Additionally, since plasmalemmal resealing must be attempted, even after extensive injury in order to prevent cell lysis, the restoration of membrane integrity can be achieved by ceramide-driven invagination of the lipid bilayer, during which the cell is prepared for apoptotic disposal. Plasmalemmal injury can be contained by a surfeit of plasma membrane, which serves as a trap for toxic substances: either passively by an abundance of cellular protrusions, or actively by membrane blebbing.
Resumo:
PURPOSE To analyze the frequency of perforation of the sinus membrane during maxillary sinus floor elevation (SFE) and to assess possible risk factors. MATERIALS AND METHODS Seventy-seven cases of SFE performed with a lateral window approach were evaluated retrospectively. Clinical and radiographic variables potentially influencing the risk of sinus membrane perforation were evaluated and divided into patient-related factors (age, sex, smoking habit); surgery-related factors (type of surgical approach, side, units, sites, and technique of osteotomy); and maxillary sinus-related factors (presence and height of septum, height of residual ridge, thickness of lateral sinus wall, width of antrum, and thickness and status of sinus membrane). RESULTS The following factors presented with at least a 10% difference in rates of perforations: smokers (46.2%) versus nonsmokers (23.4%), simultaneous (32%) versus staged (18.5%) approach, mixed premolar-molar sites (41.2%) versus premolar-only sites (16.7%) versus molar-only sites (26.2%), presence of septa (42.9%) versus no septa (23.8%), and minimum height of residual ridge ≤4 mm (34.2%) versus > 4 mm (20.5%). These same parameters, except minimum height of residual ridge, also showed an odds ratio above 2. However, none of the comparisons reached statistical significance. CONCLUSION The present study failed to demonstrate any factor that statistically significantly increased the risk of sinus membrane perforation during SFE using the lateral window approach.
Resumo:
BACKGROUND The purpose of this study is to compare clinical outcomes in the treatment of deep non-contained intrabony defects (i.e., with ≥70% 1-wall component and a residual 2- to 3-wall component in the most apical part) using deproteinized bovine bone mineral (DBBM) combined with either enamel matrix protein derivative (EMD) or collagen membrane (CM). METHODS Forty patients with multiple intrabony defects were enrolled. Only one non-contained defect per patient with an intrabony depth ≥3 mm located in the interproximal area of single- and multirooted teeth was randomly assigned to the treatment with either EMD + DBBM (test: n = 20) or CM + DBBM (control: n = 20). At baseline and after 12 months, clinical parameters including probing depth (PD) and clinical attachment level (CAL) were recorded. The primary outcome variable was the change in CAL between baseline and 12 months. RESULTS At baseline, the intrabony component of the defects amounted to 6.1 ± 1.9 mm for EMD + DBBM and 6.0 ± 1.9 mm for CM + DBBM sites (P = 0.81). The mean CAL gain at sites treated with EMD + DBBM was not statistically significantly different (P = 0.82) compared with CM + DBBM (3.8 ± 1.5 versus 3.7 ± 1.2 mm). No statistically significant difference (P = 0.62) was observed comparing the frequency of CAL gain ≥4 mm between EMD + DBBM (60%) and CM + DBBM (50%) or comparing the frequency of residual PD ≥6 mm between EMD + DBBM (5%) and CM + DBBM (15%) (P = 0.21). CONCLUSION Within the limitations of the present study, regenerative therapy using either EMD + DBBM or CM + DBBM yielded comparable clinical outcomes in deep non-contained intrabony defects after 12 months.
Resumo:
Autophagy is a lysosomal bulk degradation pathway for cytoplasmic cargo, such as long-lived proteins, lipids, and organelles. Induced upon nutrient starvation, autophagic degradation is accomplished by the concerted actions of autophagy-related (ATG) proteins. Here we demonstrate that two ATGs, human Atg2A and Atg14L, colocalize at cytoplasmic lipid droplets (LDs) and are functionally involved in controlling the number and size of LDs in human tumor cell lines. We show that Atg2A is targeted to cytoplasmic ADRP-positive LDs that migrate bidirectionally along microtubules. The LD localization of Atg2A was found to be independent of the autophagic status. Further, Atg2A colocalized with Atg14L under nutrient-rich conditions when autophagy was not induced. Upon nutrient starvation and dependent on phosphatidylinositol 3-phosphate [PtdIns(3)P] generation, both Atg2A and Atg14L were also specifically targeted to endoplasmic reticulum-associated early autophagosomal membranes, marked by the PtdIns(3)P effectors double-FYVE containing protein 1 (DFCP1) and WD-repeat protein interacting with phosphoinositides 1 (WIPI-1), both of which function at the onset of autophagy. These data provide evidence for additional roles of Atg2A and Atg14L in the formation of early autophagosomal membranes and also in lipid metabolism.