983 resultados para mean intensity
Resumo:
Changes in climate variability and, in particular, changes in extreme climate events are likely to be of far more significance for environmentally vulnerable regions than changes in the mean state. It is generally accepted that sea-surface temperatures (SSTs) play an important role in modulating rainfall variability. Consequently, SSTs can be prescribed in global and regional climate modelling in order to study the physical mechanisms behind rainfall and its extremes. Using a satellite-based daily rainfall historical data set, this paper describes the main patterns of rainfall variability over southern Africa, identifies the dates when extreme rainfall occurs within these patterns, and shows the effect of resolution in trying to identify the location and intensity of SST anomalies associated with these extremes in the Atlantic and southwest Indian Ocean. Derived from a Principal Component Analysis (PCA), the results also suggest that, for the spatial pattern accounting for the highest amount of variability, extremes extracted at a higher spatial resolution do give a clearer indication regarding the location and intensity of anomalous SST regions. As the amount of variability explained by each spatial pattern defined by the PCA decreases, it would appear that extremes extracted at a lower resolution give a clearer indication of anomalous SST regions.
Resumo:
Models often underestimate blocking in the Atlantic and Pacific basins and this can lead to errors in both weather and climate predictions. Horizontal resolution is often cited as the main culprit for blocking errors due to poorly resolved small-scale variability, the upscale effects of which help to maintain blocks. Although these processes are important for blocking, the authors show that much of the blocking error diagnosed using common methods of analysis and current climate models is directly attributable to the climatological bias of the model. This explains a large proportion of diagnosed blocking error in models used in the recent Intergovernmental Panel for Climate Change report. Furthermore, greatly improved statistics are obtained by diagnosing blocking using climate model data corrected to account for mean model biases. To the extent that mean biases may be corrected in low-resolution models, this suggests that such models may be able to generate greatly improved levels of atmospheric blocking.
Resumo:
Synoptic-scale air flow variability over the United Kingdom is measured on a daily time scale by following previous work to define 3 indices: geostrophic flow strength, vorticity and direction. Comparing the observed distribution of air flow index values with those determined from a simulation with the Hadley Centre’s global climate model (HadCM2) identifies some minor systematic biases in the model’s synoptic circulation but demonstrates that the major features are well simulated. The relationship between temperature and precipitation from parts of the United Kingdom and these air flow indices (either singly or in pairs) is found to be very similar in both the observations and model output; indeed the simulated and observed precipitation relationships are found to be almost interchangeable in a quantitative sense. These encouraging results imply that some reliability can be assumed for single grid-box and regional output from this climate model; this applies only to those grid boxes evaluated here (which do not have high or complex orography), only to the portion of variability that is controlled by synoptic air flow variations, and only to those surface variables considered here (temperature and precipitation).
Resumo:
The intensity and distribution of daily precipitation is predicted to change under scenarios of increased greenhouse gases (GHGs). In this paper, we analyse the ability of HadCM2, a general circulation model (GCM), and a high-resolution regional climate model (RCM), both developed at the Met Office's Hadley Centre, to simulate extreme daily precipitation by reference to observations. A detailed analysis of daily precipitation is made at two UK grid boxes, where probabilities of reaching daily thresholds in the GCM and RCM are compared with observations. We find that the RCM generally overpredicts probabilities of extreme daily precipitation but that, when the GCM and RCM simulated values are scaled to have the same mean as the observations, the RCM captures the upper-tail distribution more realistically. To compare regional changes in daily precipitation in the GHG-forced period 2080-2100 in the GCM and the RCM, we develop two methods. The first considers the fractional changes in probability of local daily precipitation reaching or exceeding a fixed 15 mm threshold in the anomaly climate compared with the control. The second method uses the upper one-percentile of the control at each point as the threshold. Agreement between the models is better in both seasons with the latter method, which we suggest may be more useful when considering larger scale spatial changes. On average, the probability of precipitation exceeding the 1% threshold increases by a factor of 2.5 (GCM and RCM) in winter and by I .7 (GCM) or 1.3 (RCM) in summer.
Resumo:
Extra-tropical cyclones are identified and compared using data from four recent re-analyses for the winter periods in both hemispheres. Results show the largest differences occur between the older lower resolution JRA25 re-analysis when compared with the newer high resolution re-analyses, in particular in the Southern Hemisphere (SH). Spatial differences between the newest re-analyses are small in both hemispheres and generally not significant except some common regions associated with cyclogenesis close to orography. Intensities are generally related to spatial resolution except NASA-MERRA which has larger intensities for several different measures. Matching storms between re-analyses shows the number matched between ERA-Interim and the other re-analyses are similar in the Northern Hemisphere (NH). In the SH the number matched between JRA25 and ERA-Interim is lower than in the NH, but for NASA-MERRA and NCEP-CFSR the number matched is similar to the NH. The mean separation of the identically same cyclones is typically less than 20 geodesic in both hemispheres for the latest re-analyses, whereas JRA25 compared with the other re-analyses has a broader distribution in the SH indicating greater uncertainty. The instantaneous intensity differences for matched storms shows narrow distributions for pressure while for winds and vorticity the distributions are much broader indicating larger uncertainty typical of smaller scale fields. Composite cyclone diagnostics show that cyclones are very similar between the re-analyses, with differences being related to the intensities, consistent with the intensity results. Overall, results show NH cyclones correspond well between re-analyses, with a significant improvement in the SH for the latest re-analyses, indicating a convergence between re-analyses for cyclone properties.
Resumo:
Changes to the Northern Hemisphere winter (December, January and February) extratropical storm tracks and cyclones in a warming climate are investigated. Two idealised climate change experiments with HiGEM1.1, a doubled CO2 and a quadrupled CO2 experiment, are compared against a present day control run. An objective feature tracking method is used and a focus given to regional changes. The climatology of extratropical storm tracks from the control run is shown to be in good agreement with ERA-40, while the frequency distribution of cyclone intensity also compares well. In both simulations the mean climate changes are generally consistent with the simulations of the IPCC AR4 models, with a strongly enhanced surface warming at the winter pole and the reduced lower tropospheric warming over the North Atlantic Ocean associated with the slowdown of the Meridional Overturning Circulation. The circulation changes in the North Atlantic are different between the two idealised simulations with different CO2 forcings. In the North Atlantic the storm tracks are influenced by the slowdown of the MOC, the enhanced surface polar warming, and the enhanced upper tropical troposphere warming, giving a north eastward shift of the storm tracks in the 2XCO2 experiment, but no shift in the 4XCO2 experiment. Over the Pacific, in the 2XCO2 experiment, changes in the mean climate are associated with local temperature changes, while in the 4XCO2 experiment the changes in the Pacific are impacted by the weakened tropical circulation. The storm track changes are consistent with the shifts in the zonal wind. Total cyclone numbers are found to decrease over the Northern Hemisphere with increasing CO2 forcing. Changes in cyclone intensity are found using 850hPa vorticity, mean sea level pressure, and 850hPa winds. The intensity of the Northern Hemisphere cyclones is found to decrease relative to the control.
Resumo:
We develop a database of 110 gradual solar energetic particle (SEP) events, over the period 1967–2006, providing estimates of event onset, duration, fluence, and peak flux for protons of energy E > 60 MeV. The database is established mainly from the energetic proton flux data distributed in the OMNI 2 data set; however, we also utilize the McMurdo neutron monitor and the energetic proton flux from GOES missions. To aid the development of the gradual SEP database, we establish a method with which the homogeneity of the energetic proton flux record is improved. A comparison between other SEP databases and the database developed here is presented which discusses the different algorithms used to define an event. Furthermore, we investigate the variation of gradual SEP occurrence and fluence with solar cycle phase, sunspot number (SSN), and interplanetary magnetic field intensity (Bmag) over solar cycles 20–23. We find that the occurrence and fluence of SEP events vary with the solar cycle phase. Correspondingly, we find a positive correlation between SEP occurrence and solar activity as determined by SSN and Bmag, while the mean fluence in individual events decreases with the same measures of solar activity. Therefore, although the number of events decreases when solar activity is low, the events that do occur at such times have higher fluence. Thus, large events such as the “Carrington flare” may be more likely at lower levels of solar activity. These results are discussed in the context of other similar investigations.
Resumo:
This paper discusses how numerical gradient estimation methods may be used in order to reduce the computational demands on a class of multidimensional clustering algorithms. The study is motivated by the recognition that several current point-density based cluster identification algorithms could benefit from a reduction of computational demand if approximate a-priori estimates of the cluster centres present in a given data set could be supplied as starting conditions for these algorithms. In this particular presentation, the algorithm shown to benefit from the technique is the Mean-Tracking (M-T) cluster algorithm, but the results obtained from the gradient estimation approach may also be applied to other clustering algorithms and their related disciplines.
Resumo:
The consistency of precipitation variability estimated from the multiple satellite-based observing systems is assessed. There is generally good agreement between TRMM TMI, SSM/I, GPCP and AMSRE datasets for the inter-annual variability of precipitation since 1997 but the HOAPS dataset appears to overestimate the magnitude of variability. Over the tropical ocean the TRMM 3B42 dataset produces unrealistic variabilitys. Based upon deseasonalised GPCP data for the period 1998-2008, the sensitivity of global mean precipitation (P) to surface temperature (T) changes (dP/dT) is about 6%/K, although a smaller sensitivity of 3.6%/K is found using monthly GPCP data over the longer period 1989-2008. Over the tropical oceans dP/dT ranges from 10-30%/K depending upon time-period and dataset while over tropical land dP/dT is -8 to -11%/K for the 1998-2008 period. Analyzing the response of the tropical ocean precipitation intensity distribution to changes in T we find the wetter area P shows a strong positive response to T of around 20%/K. The response over the drier tropical regimes is less coherent and varies with datasets, but responses over the tropical land show significant negative relationships over an interannual time-scale. The spatial and temporal resolutions of the datasets strongly influence the precipitation responses over the tropical oceans and help explain some of the discrepancy between different datasets. Consistency between datasets is found to increase on averaging from daily to 5-day time-scales and considering a 1o (or coarser) spatial resolution. Defining the wet and dry tropical ocean regime by the 60th percentile of P intensity, the 5-day average, 1o TMI data exhibits a coherent drying of the dry regime at the rate of -20%/K and the wet regime becomes wetter at a similar rate with warming.
Resumo:
PV only generates electricity during daylight hours and primarily generates over summer. In the UK, the carbon intensity of grid electricity is higher during the daytime and over winter. This work investigates whether the grid electricity displaced by PV is high or low carbon compared to the annual mean carbon intensity using carbon factors at higher temporal resolutions (half-hourly and daily). UK policy for carbon reporting requires savings to be calculated using the annual mean carbon intensity of grid electricity. This work offers an insight into whether this technique is appropriate. Using half hourly data on the generating plant supplying the grid from November 2008 to May 2010, carbon factors for grid electricity at half-hourly and daily resolution have been derived using technology specific generation emission factors. Applying these factors to generation data from PV systems installed on schools, it is possible to assess the variation in the carbon savings from displacing grid electricity with PV generation using carbon factors with different time resolutions. The data has been analyzed for a period of 363 to 370 days and so cannot account for inter-year variations in the relationship between PV generation and carbon intensity of the electricity grid. This analysis suggests that PV displaces more carbon intensive electricity using half-hourly carbon factors than using daily factors but less compared with annual ones. A similar methodology could provide useful insights on other variable renewable and demand-side technologies and in other countries where PV performance and grid behavior are different.
Resumo:
As many as fourteen US states have now mandated minimum service requirements for real estate brokerage relationships in residential transactions. This study attempts to determine whether these minimum service laws have any impact on brokerage competition. Federal government agencies allege such laws discourage competition because they limit the offering of nontraditional brokerage services. However, alternatively, a legislative “bright line” definition of the lowest level of acceptable service may reduce any perceived risk in offering non-traditional brokerage services and therefore encourage competition. Using several empirical strategies and state-level data over nine years (2000-08), we do not find any consistent and significant impact (positive/negative) of minimum services laws on number of licensees per 100 households, our proxy for competition. Interestingly, we also find that association strength, as measured by Realtor association membership penetration, has a strong deterring effect on competition.
Resumo:
The application of automatic segmentation methods in lesion detection is desirable. However, such methods are restricted by intensity similarities between lesioned and healthy brain tissue. Using multi-spectral magnetic resonance imaging (MRI) modalities may overcome this problem but it is not always practicable. In this article, a lesion detection approach requiring a single MRI modality is presented, which is an improved method based on a recent publication. This new method assumes that a low similarity should be found in the regions of lesions when the likeness between an intensity based fuzzy segmentation and a location based tissue probabilities is measured. The usage of a normalized similarity measurement enables the current method to fine-tune the threshold for lesion detection, thus maximizing the possibility of reaching high detection accuracy. Importantly, an extra cleaning step is included in the current approach which removes enlarged ventricles from detected lesions. The performance investigation using simulated lesions demonstrated that not only the majority of lesions were well detected but also normal tissues were identified effectively. Tests on images acquired in stroke patients further confirmed the strength of the method in lesion detection. When compared with the previous version, the current approach showed a higher sensitivity in detecting small lesions and had less false positives around the ventricle and the edge of the brain