949 resultados para massive vectorial boson
Resumo:
The Standard Model of particle physics consists of the quantum electrodynamics (QED) and the weak and strong nuclear interactions. The QED is the basis for molecular properties, and thus it defines much of the world we see. The weak nuclear interaction is responsible for decays of nuclei, among other things, and in principle, it should also effects at the molecular scale. The strong nuclear interaction is hidden in interactions inside nuclei. From the high-energy and atomic experiments it is known that the weak interaction does not conserve parity. Consequently, the weak interaction and specifically the exchange of the Z^0 boson between a nucleon and an electron induces small energy shifts of different sign for mirror image molecules. This in turn will make the other enantiomer of a molecule energetically favorable than the other and also shifts the spectral lines of the mirror image pair of molecules into different directions creating a split. Parity violation (PV) in molecules, however, has not been observed. The topic of this thesis is how the weak interaction affects certain molecular magnetic properties, namely certain parameters of nuclear magnetic resonance (NMR) and electron spin resonance (ESR) spectroscopies. The thesis consists of numerical estimates of NMR and ESR spectral parameters and investigations of the effects of different aspects of quantum chemical computations to them. PV contributions to the NMR shielding and spin-spin coupling constants are investigated from the computational point of view. All the aspects of quantum chemical electronic structure computations are found to be very important, which makes accurate computations challenging. Effects of molecular geometry are also investigated using a model system of polysilyene chains. PV contribution to the NMR shielding constant is found to saturate after the chain reaches a certain length, but the effects of local geometry can be large. Rigorous vibrational averaging is also performed for a relatively small and rigid molecule. Vibrational corrections to the PV contribution are found to be only a couple of per cents. PV contributions to the ESR g-tensor are also evaluated using a series of molecules. Unfortunately, all the estimates are below the experimental limits, but PV in some of the heavier molecules comes close to the present day experimental resolution.
Resumo:
TRAUTMAN has postulated1 that the usual space−time singularity occurring in classical cosmological models and in the gravitational collapse of massive objects could be averted if intrinsic spin effects are incorporated into general relativity by adding torsion terms to the usual Einstein field equations, that is through the Einstein−Cartan theory. Invoking a primordial magnetic field for aligning all the individual nuclear spins he shows that his universe consisting of 1080 aligned neutrons collapses to a minimum radius of the order of 1 cm with a corresponding matter density of 1055 g cm-3.
Resumo:
Mycobacterium leprae, which has undergone reductive evolution leaving behind a minimal set of essential genes, has retained intervening sequences in four of its genes implicating a vital role for them in the survival of the leprosy bacillus. A single in-frame intervening sequence has been found embedded within its recA gene. Comparison of M. leprae recA intervening sequence with the known intervening sequences indicated that it has the consensus amino acid sequence necessary for being a LAGLIDADG-type homing endonuclease. In light of massive gene decay and function loss in the leprosy bacillus, we sought to investigate whether its recA intervening sequence encodes a catalytically active homing endonuclease. Here we show that the purified M. leprae RecA intein (PI-MleI) binds to cognate DNA and displays endonuclease activity in the presence of alternative divalent cations, Mg2+ or Mn2+. A combination of approaches including four complementary footprinting assays such as DNase I, Cu/phenanthroline, methylation protection and KMnO4, enhancement of 2-aminopurine fluorescence and mapping of the cleavage site revealed that PI-MleI binds to cognate DNA flanking its insertion site, induces helical distortion at the cleavage site and generates two staggered double-strand breaks. Taken together, these results implicate that PI-MleI possess a modular structure with separate domains for DNA target recognition and cleavage, each with distinct sequence preferences. From a biological standpoint, it is tempting to speculate that our findings have implications for understanding the evolution of LAGLIDADG family of homing endonucleases
Resumo:
The paper describes egg laying and reproduction in ICHTHYOPHIS MALABARENSIS. 100 eggs, the largest ever in Apoda, are laid in a single string and manipulated by the female into a massive clutch. The reproductive strategies in the species are discussed.
Resumo:
TRAUTMAN has postulated1 that the usual space−time singularity occurring in classical cosmological models and in the gravitational collapse of massive objects could be averted if intrinsic spin effects are incorporated into general relativity by adding torsion terms to the usual Einstein field equations, that is through the Einstein−Cartan theory. Invoking a primordial magnetic field for aligning all the individual nuclear spins he shows that his universe consisting of 1080 aligned neutrons collapses to a minimum radius of the order of 1 cm with a corresponding matter density of 1055 g cm-3.
Resumo:
The improvement terms in the generalised energy-momentum tensor of Callan, Coleman and Jackiw can be derived from a variational principle if the Lagrangian is generalised to describe coupling between ‘matter’ fields and a spin-2 boson field. The required Lorentz-invariant theory is a linearised version of Kibble-Sciama theory with an additional (generally-covariant) coupling term in the Lagrangian. The improved energy-momentum tensor appears as the source of the spin-2 field, if terms of second order in the coupling constant are neglected.
Resumo:
This study focuses on the theory of individual rights that the German theologian Conrad Summenhart (1455-1502) explicated in his massive work Opus septipartitum de contractibus pro foro conscientiae et theologico. The central question to be studied is: How does Summenhart understand the concept of an individual right and its immediate implications? The basic premiss of this study is that in Opus septipartitum Summenhart composed a comprehensive theory of individual rights as a contribution to the on-going medieval discourse on rights. With this rationale, the first part of the study concentrates on earlier discussions on rights as the background for Summenhart s theory. Special attention is paid to language in which right was defined in terms of power . In the fourteenth century writers like Hervaeus Natalis and William Ockham maintained that right signifies power by which the right-holder can to use material things licitly. It will also be shown how the attempts to describe what is meant by the term right became more specified and cultivated. Gerson followed the implications that the term power had in natural philosophy and attributed rights to animals and other creatures. To secure right as a normative concept, Gerson utilized the ancient ius suum cuique-principle of justice and introduced a definition in which right was seen as derived from justice. The latter part of this study makes effort to reconstructing Summenhart s theory of individual rights in three sections. The first section clarifies Summenhart s discussion of the right of the individual or the concept of an individual right. Summenhart specified Gerson s description of right as power, taking further use of the language of natural philosophy. In this respect, Summenhart s theory managed to bring an end to a particular continuity of thought that was centered upon a view in which right was understood to signify power to licit action. Perhaps the most significant feature of Summenhart s discussion was the way he explicated the implication of liberty that was present in Gerson s language of rights. Summenhart assimilated libertas with the self-mastery or dominion that in the economic context of discussion took the form of (a moderate) self-ownership. Summenhart discussion also introduced two apparent extensions to Gerson s terminology. First, Summenhart classified right as relation, and second, he equated right with dominion. It is distinctive of Summenhart s view that he took action as the primary determinant of right: Everyone has as much rights or dominion in regard to a thing, as much actions it is licit for him to exercise in regard to the thing. The second section elaborates Summenhart s discussion of the species dominion, which delivered an answer to the question of what kind of rights exist, and clarified thereby the implications of the concept of an individual right. The central feature in Summenhart s discussion was his conscious effort to systematize Gerson s language by combining classifications of dominion into a coherent whole. In this respect, his treatement of the natural dominion is emblematic. Summenhart constructed the concept of natural dominion by making use of the concepts of foundation (founded on a natural gift) and law (according to the natural law). In defining natural dominion as dominion founded on a natural gift, Summenhart attributed natural dominion to animals and even to heavenly bodies. In discussing man s natural dominion, Summenhart pointed out that the natural dominion is not sufficiently identified by its foundation, but requires further specification, which Summenhart finds in the idea that natural dominion is appropriate to the subject according to the natural law. This characterization lead him to treat God s dominion as natural dominion. Partly, this was due to Summenhart s specific understanding of the natural law, which made reasonableness as the primary criterion for the natural dominion at the expense of any metaphysical considerations. The third section clarifies Summenhart s discussion of the property rights defined by the positive human law. By delivering an account on juridical property rights Summenhart connected his philosophical and theological theory on rights to the juridical language of his times, and demonstrated that his own language of rights was compatible with current juridical terminology. Summenhart prepared his discussion of property rights with an account of the justification for private property, which gave private property a direct and strong natural law-based justification. Summenhart s discussion of the four property rights usus, usufructus, proprietas, and possession aimed at delivering a detailed report of the usage of these concepts in juridical discourse. His discussion was characterized by extensive use of the juridical source texts, which was more direct and verbal the more his discussion became entangled with the details of juridical doctrine. At the same time he promoted his own language on rights, especially by applying the idea of right as relation. He also showed recognizable effort towards systematizing juridical language related to property rights.
Resumo:
This paper describes how English as foreign language (EFL) teachers in Indonesia have implemented the recent character education policy within an era of school-based curriculum reform. The character education policy required all teachers, EFL teachers included, to instill certain values in every lesson whilst the school-based curriculum reform permitted teachers to develop locally responsive curriculum content. The design behind the reform seeks to sharpen education’s role as a site of moral inculcation in the face of growing social diversity that threatens social cohesion and the prolonged social problem of massive corruption. Drawing on Durkheim’s (1925) distinction between secular and religious morality, this paper considers how the Indonesian curriculum promoted rational or secular moral education and how the EFL teachers enacted religious moral education given religiosity is salient in both the community and schools of Indonesia. Bernstein’s concepts of pedagogic discourse, instructional and regulative discourses were adopted to analyse how EFL teachers have re-contextualized both curricular reforms in their micro pedagogic settings. The conclusion suggests that teachers’ implementation of moral education in their classes was dominated by their school communities’ and the teachers’ own preferred value of religiosity. Such values played out in their classes through both the regulative discourse and the instructional discourse.
Resumo:
The juvenile sea squirt wanders through the sea searching for a suitable rock or hunk of coral to cling to and make its home for life. For this task it has a rudimentary nervous system. When it finds its spot and takes root, it doesn't need its brain any more so it eats it. It's rather like getting tenure. Daniel C. Dennett (from Consciousness Explained, 1991) The little sea squirt needs its brain for a task that is very simple and short. When the task is completed, the sea squirt starts a new life in a vegetative state, after having a nourishing meal. The little brain is more tightly structured than our massive primate brains. The number of neurons is exact, no leeway in neural proliferation is tolerated. Each neuroblast migrates exactly to the correct position, and only a certain number of connections with the right companions is allowed. In comparison, growth of a mammalian brain is a merry mess. The reason is obvious: Squirt brain needs to perform only a few, predictable functions, before becoming waste. The more mobile and complex mammals engage their brains in tasks requiring quick adaptation and plasticity in a constantly changing environment. Although the regulation of nervous system development varies between species, many regulatory elements remain the same. For example, all multicellular animals possess a collection of proteoglycans (PG); proteins with attached, complex sugar chains called glycosaminoglycans (GAG). In development, PGs participate in the organization of the animal body, like in the construction of parts of the nervous system. The PGs capture water with their GAG chains, forming a biochemically active gel at the surface of the cell, and in the extracellular matrix (ECM). In the nervous system, this gel traps inside it different molecules: growth factors and ECM-associated proteins. They regulate the proliferation of neural stem cells (NSC), guide the migration of neurons, and coordinate the formation of neuronal connections. In this work I have followed the role of two molecules contributing to the complexity of mammalian brain development. N-syndecan is a transmembrane heparan sulfate proteoglycan (HSPG) with cell signaling functions. Heparin-binding growth-associated molecule (HB-GAM) is an ECM-associated protein with high expression in the perinatal nervous system, and high affinity to HS and heparin. N-syndecan is a receptor for several growth factors and for HB-GAM. HB-GAM induces specific signaling via N-syndecan, activating c-Src, calcium/calmodulin-dependent serine protein kinase (CASK) and cortactin. By studying the gene knockouts of HB-GAM and N-syndecan in mice, I have found that HB-GAM and N-syndecan are involved as a receptor-ligand-pair in neural migration and differentiation. HB-GAM competes with the growth factors fibriblast growth factor (FGF)-2 and heparin-binding epidermal growth factor (HB-EGF) in HS-binding, causing NSCs to stop proliferation and to differentiate, and affects HB-EGF-induced EGF receptor (EGFR) signaling in neural cells during migration. N-syndecan signaling affects the motility of young neurons, by boosting EGFR-mediated cell migration. In addition, these two receptors form a complex at the surface of the neurons, probably creating a motility-regulating structure.
Resumo:
We investigate use of transverse beam polarization in probing anomalous coupling of a Higgs boson to a pair of vector bosons, at the International Linear Collider (ILC). We consider the most general form of V V H (V = W/Z) vertex consistent with Lorentz invariance and investigate its effects on the process e(+)e(-) -> f (f) over barH, f being a light fermion. Constructing observables with definite C P and naive time reversal ((T) over tilde) transformation properties, we find that transverse beam polarization helps us to improve on the sensitivity of one part of the anomalous Z Z H Coupling that is odd under C P. Even more importantly it provides the possibility of discriminating from each other, two terms in the general Z Z H vertex, both of which are even under C P and (T) over bar. Use of transversebeam polarization when combined with information from unpolarized and linearly polarized beams therefore, allows one to have completely independent probes of all the different parts of a general ZZH vertex.
Resumo:
Within central nervous system, the simple division of chemical synaptic transmission to depolarizing excitation mediated by glutamate and hyperpolarizing inhibition mediated by γ-amino butyric acid (GABA), is evidently an oversimplification. The GABAa receptor (GABAaR) mediated responses can be of opposite sign within a single resting cell, due to the compartmentalized distribution of cation chloride cotransporters (CCCs). The K+/Cl- cotransporter 2 (KCC2), member of the CCC family, promotes K+ fuelled Cl- extrusion and sets the reversal potential of GABA evoked anion currents typically slightly below the resting membrane potential. The interesting ionic plasticity property of GABAergic signalling emerges from the short-term and long-term alterations in the intraneuronal concentrations of GABAaR permeable anions (Cl- and HCO3-). The short-term effects arise rapidly (in the time scale of hundreds of milliseconds) and are due to the GABAaR activation dependent shifts in anion gradients, whereas the changes in expression, distribution and kinetic regulation of CCCs are underlying the long-term effects, which may take minutes or even hours to develop. In this Thesis, the differences in the reversal potential of GABAaR mediated responses between dopaminergic and GABAergic cell types, located in the substantia nigra, were shown to be attributable to the differences in the chloride extrusion mechanisms. The stronger inhibitory effect of GABA on GABAergic neurons was due to the cell type specific expression of KCC2 whereas the KCC2 was absent from dopaminergic neurons, leading to a less prominent inhibition brought by GABAaR activation. The levels of KCC2 protein exhibited activity dependent alterations in hippocampal pyramidal neurons. Intense neuronal activity, leading to a massive release of brain derived neurotrophic factor (BDNF) in vivo, or applications of tyrosine receptor kinase B (TrkB) agonists BDNF or neurotrophin-4 in vitro, were shown to down-regulate KCC2 protein levels which led to a reduction in the efficacy of Cl- extrusion. The GABAergic transmission is interestingly involved in an increase of extracellular K+ concentration. A substantial increase in interstitial K+ tends to depolarize the cell membrane. The effects that varying ion gradients had on the generation of biphasic GABAaR mediated responses were addressed, with particular emphasis on the novel idea that the K+/Cl- extrusion via KCC2 is accelerated in response to a rapid accumulation of intracellular Cl-. The KCC2 inhibitor furosemide produced a large reduction in the GABAaR dependent extracellular K+ transients. Thus, paradoxically, both the inefficient KCC2 activity (via increased intracellular Cl-) and efficient KCC2 activity (via increased extracellular K+) may promote excitation.
Resumo:
The area of intensively managed forests, in which required conditions for several liverwort species are seldom found, has expanded over the forest landscape during the last century. Liverworts are very sensitive to habitat changes, because they demand continuously moist microclimate. Consequently, about third of the forest liverworts have been classified as threatened or near threatened in Finland. The general objective of this thesis is to increase knowledge of the reproductive and dispersal strategies of the substrate-specific forest bryophytes. A further aim was to develop recommendations for conservation measures for species inhabiting unstable and stable habitats in forest landscape. Both population ecological and genetic methods have been applied in the research. Anastrophyllum hellerianum inhabits spatially and temporally limited substrate patches, decaying logs, which can be considered as unstable habitats. The results show that asexual reproduction by gemmae is the dominant mode of reproduction, whereas sexual reproduction is considerably infrequent. Unlike previously assumed, not only spores but also the asexual propagules may contribute to long-distance dispersal. The combination of occasional spore production and practically continuous, massive gemma production facilitates dispersal both on a local scale and over long distances, and it compensates for the great propagule losses that take place preceding successful establishment at suitable sites. However, establishment probability of spores may be restricted because of environmental and biological limitations linked to the low success of sexual reproduction. Long-lasting dry seasons are likely to result in a low success of sexual reproduction and decreased release rate of gemmae from the shoots, and consequent fluctuations in population sizes. In the long term, the substratum limitation is likely to restrict population sizes and cause local extinctions, especially in small-sized remnant populations. Contrastingly, larger forest fragments with more natural disturbance dynamics, to which the species is adapted, are pivotal to species survival. Trichocolea tomentella occupies stable spring and mesic habitats in woodland. The relatively small populations are increasingly fragmented with a high risk for extinction for extrinsic reasons. The results show that T. tomentella mainly invests in population persistence by effective clonal growth via forming independent ramets and in competitive ability, and considerably less in sexuality and dispersal potential. The populations possess relatively high levels of genetic diversity regardless of population size and of degree of isolation. Thus, the small-sized populations inhabiting stable habitats should not be neglected when establishing conservation strategies for the species and when considering the habitat protection of small spring sites. Restricted dispersal capacity, also on a relatively small spatial scale, is likely to prevent successful (re-)colonization in the potential habitat patches of recovering forest landscapes. By contrast, random short-range dispersal of detached vegetative fragments within populations at suitable habitat seems to be frequent. Thus, the restoration actions of spring and streamside habitats close to the populations of T. tomentella may contribute to population expansion. That, in turn, decreases the harmful effects of environmental stochasticity.
Resumo:
Intracellular membrane alterations are hallmarks of positive-sense RNA (+RNA) virus replication. Strong evidence indicates that within these exotic compartments, viral replicase proteins engage in RNA genome replication and transcription. To date, fundamental questions such as the origin of altered membranes, mechanisms of membrane deformation and topological distribution and function of viral components, are still waiting for comprehensive answers. This study addressed some of the above mentioned questions for the membrane alterations induced during Semliki Forest virus (SFV) infection of mammalian cells. With the aid of electron and fluorescence microscopy coupled with radioactive labelling and immuno-cytochemistry techniques, our group and others showed that few hours after infection the four non structural proteins (nsP1-4) and newly synthesized RNAs of SFV colocalized in close proximity of small membrane invaginations, designated as spherules . These 50-70 nm structures were mainly detected in the perinuclear area, at the limiting membrane of modified endosomes and lysosomes, named CPV-I (cytopathic vacuoles type I). More rarely, spherules were also found at the plasma membrane (PM). In the first part of this study I present the first three-dimensional reconstruction of the CPV-I and the spherules, obtained by electron tomography after chemical or cryo-fixation. Different approaches for imaging these macromolecular assemblies to obtain better structure preservation and higher resolution are presented as unpublished data. This study provides insights into spherule organization and distribution of viral components. The results of this and other experiments presented in this thesis will challenge currently accepted models for virus replication complex formation and function. In a revisitation of our previous models, the second part of this work provides the first complete description of the biogenesis of the CPV-I. The results demonstrate that these virus-induced vacuoles, where hundreds of spherules accumulate at late stages during infection, represent the final phase of a journey initiated at the PM, which apparently serves as a platform for spherule formation. From the PM spherules were internalized by an endocytic event that required the activity of the class I PI3K, caveolin-1, cellular cholesterol and functional actin-myosin network. The resulting neutral endocytic carrier vesicle delivered the spherules to the membrane of pre-existing acidic endosomes via multiple fusion events. Microtubule based transport supported the vectorial transfer of these intermediates to the pericentriolar area where further fusions generated the CPV-I. A signal for spherule internalization was identified in one of the replicase proteins, nsP3. Infections of cells with viruses harbouring a deletion in a highly phosphorylated region of nsP3 did not result in the formation of CPV-Is. Instead, thousands of spherules remained at the PM throughout the infection cycle. Finally, the role of the replicase protein nsP2 during viral RNA replication and transcription was investigated. Three enzymatic activities, protease, NTPase and RNA-triphosphatase were studied with the aid of temperature sensitive mutants in vitro and, when possible, in vivo. The results highlighted the interplay of the different nsP2 functions during different steps of RNA replication and sub-genomic promoter regulation, and suggest that the protein could have different activities when participating in the replication complex or as a free enzyme.
Resumo:
Neurotrophic factors (NTFs) and the extracellular matrix (ECM) are important regulators of axonal growth and neuronal survival in mammalian nervous system. Understanding of the mechanisms of this regulation is crucial for the development of posttraumatic therapies and drug intervention in the injured nervous system. NTFs act as soluble, target-derived extracellular regulatory molecules for a wide range of physiological functions including axonal guidance and the regulation of programmed cell death in the nervous system. The ECM determines cell adhesion and regulates multiple physiological functions via short range cell-matrix interactions. The present work focuses on the mechanisms of the action of NTFs and the ECM on axonal growth and survival of cultured sensory neurons from dorsal root ganglia (DRG). We first examined signaling mechanisms of the action of the glial cell line-derived neurotrophic factor (GDNF) family ligands (GFLs) on axonal growth. GDNF, neurturin (NRTN) and artemin (ART) but not persephin (PSPN) promoted axonal initiation in cultured DRG neurons from young adult mice. This effect required Src family kinase (SFK) activity. In neurons from GFRalpha2-deficient mice, NRTN did not significantly promote axonal initiation. GDNF and NRTN induced extensive lamellipodia formation on neuronal somata and growth cones. This study suggested that GDNF, NRTN and ARTN may serve as stimulators of nerve regeneration under posttraumatic conditions. Consequently we studied the convergence of signaling pathways induced by NTFs and the ECM molecule laminin in the intracellular signaling network that regulates axonal growth. We demonstrated that co-stimulation of DRG neurons with NTFs (GDNF, NRTN or nerve growth factor (NGF)) and laminin leads to axonal growth that requires activation of SFKs. A different, SFK-independent signaling pathway evoked axonal growth on laminin in the absence of the NTFs. In contrast, axonal branching was regulated by SFKs both in the presence and in the absence of NGF. We proposed and experimentally verified a Boolean model of the signaling network triggered by NTFs and laminin. Our results put forward an approach for predictable, Boolean logics-driven pharmacological manipulation of a complex signaling network. Finally we found that N-syndecan, the receptor for the ECM component HB-GAM was required for the survival of neonatal sensory neurons in vitro. We demonstrated massive cell death of cultured DRG neurons from mice deficient in the N-syndecan gene as compared to wild type controls. Importantly, this cell death could not be prevented by NGF the neurotrophin which activates multiple anti-apoptotic cascades in DRG neurons. The survival deficit was observed during first postnatal week. By contrast, DRG neurons from young adult N-syndecan knock-out mice exhibited normal survival. This study identifies a completely new syndecan-dependent type of signaling that regulates cell death in neurons.
Resumo:
Segmentation defects of the vertebrae (SDV) are caused by aberrant somite formation during embryogenesis and result in irregular formation of the vertebrae and ribs. The Notch signal transduction pathway plays a critical role in somite formation and patterning in model vertebrates. In humans, mutations in several genes involved in the Notch pathway are associated with SDV, with both autosomal recessive (MESP2, DLL3, LFNG, HES7) and autosomal dominant (TBX6) inheritance. However, many individuals with SDV do not carry mutations in these genes. Using whole-exome capture and massive parallel sequencing, we identified compound heterozygous mutations in RIPPLY2 in two brothers with multiple regional SDV, with appropriate familial segregation. One novel mutation (c.A238T:p.Arg80*) introduces a premature stop codon. In transiently transfected C2C12 mouse myoblasts, the RIPPLY2 mutant protein demonstrated impaired transcriptional repression activity compared with wild-type RIPPLY2 despite similar levels of expression. The other mutation (c.240-4T>G), with minor allele frequency <0.002, lies in the highly conserved splice site consensus sequence 5' to the terminal exon. Ripply2 has a well-established role in somitogenesis and vertebral column formation, interacting at both gene and protein levels with SDV-associated Mesp2 and Tbx6. We conclude that compound heterozygous mutations in RIPPLY2 are associated with SDV, a new gene for this condition. © The Author 2014.