936 resultados para m-form
Resumo:
Vorbesitzer: Johann Christian Senckenberg
Resumo:
Boberach: Die Linien- und Reservearmee ist durch Bürgerwehr zu ergänzen. Der Deutsche Bund in seiner größten Ausdehnung braucht 18 Korps
Resumo:
BACKGROUND A recessive inherited form of lamellar ichthyosis is well recognized in golden retrievers. In this breed, young puppies demonstrate a self-limiting scaling disorder which is commonly recognized by breeders, who use the term "milk crust" to describe this syndrome. HYPOTHESIS/OBJECTIVES To determine whether "milk crust" is a new keratinization disorder or a self-limiting form of golden retriever ichthyosis. ANIMALS A total of 179 golden retriever dogs (21 dams and 158 puppies) were examined. METHODS Dermatological examination and assessment of the patatin-like phospholipase-1 (PNPLA1) genotype by PCR testing of buccal mucosal swabs. Skin biopsies from one affected puppy were evaluated for histopathological abnormalities. RESULTS Forty-five of 158 (28%) puppies exhibited scaling at 8 weeks of age; 113 of 158 (72%) were dermatologically normal. Of 144 analysed samples, 40 of 144 (28%) puppies demonstrated a homozygous mutation of the PNPLA1 genotype [of which, 36 of 40 (90%) had signs of scaling], 77 of 144 (53%) demonstrated a heterozygous mutation and 27 of 144 (19%) were a normal wild-type. In six of 17 (35%) dams, a homozygous mutation of the PNPLA1 genotype was found, eight of 17 (47%) demonstrated a heterozygous mutation and three of 17 (18%) were normal wild-type. Dams with a homozygous mutation were clinically unaffected. A 1 year follow-up revealed that 23 of 28 (82%) puppies affected with this syndrome failed to develop typical signs of ichthyosis. In five of 28 (18%) dogs there was persistence of mild scaling. CONCLUSIONS AND CLINICAL IMPORTANCE We hypothesize that the clinical syndrome termed "milk crust" could represent a transient form of golden retriever ichthyosis. Remission is not fully linked to PNPLA1 genotype, suggesting that unknown factors may contribute to the clinical disease.
Resumo:
Cutaneous collagenous vasculopathy (CCV) is a rare idiopathic microangiopathy of the cutaneous vasculature characterized histologically by the presence of dilated small blood vessels with flat endothelial cells and thickened walls containing hyaline material in the upper dermis. We report an elderly patient presenting with an extensive form of CCV involving the trunk, upper and lower limbs. She was treated with Multiplex PDL 595-nm/Nd:YAG 1,064-nm laser and optimized pulsed light. This approach, which has never been reported for CCV so far, resulted in a striking and almost complete clearance of the widespread lesions. We here review our knowledge about CCV and therapeutic options available with a survey of the literature.
Resumo:
This paper presents a non-rigid free-from 2D-3D registration approach using statistical deformation model (SDM). In our approach the SDM is first constructed from a set of training data using a non-rigid registration algorithm based on b-spline free-form deformation to encode a priori information about the underlying anatomy. A novel intensity-based non-rigid 2D-3D registration algorithm is then presented to iteratively fit the 3D b-spline-based SDM to the 2D X-ray images of an unseen subject, which requires a computationally expensive inversion of the instantiated deformation in each iteration. In this paper, we propose to solve this challenge with a fast B-spline pseudo-inversion algorithm that is implemented on graphics processing unit (GPU). Experiments conducted on C-arm and X-ray images of cadaveric femurs demonstrate the efficacy of the present approach.
Resumo:
The development of topography depends mainly on the interplay between uplift and erosion. These processes are controlled by various factors including climate, glaciers, lithology, seismic activity and short-term variables, such as anthropogenic impact. Many studies in orogens all over the world have shown how these controlling variables may affect the landscape's topography. In particular, it has been hypothesized that lithology exerts a dominant control on erosion rates and landscape morphology. However, clear demonstrations of this influence are rare and difficult to disentangle from the overprint of other signals such as climate or tectonics. In this study we focus on the upper Rhône Basin situated in the Central Swiss Alps in order to explore the relation between topography, possible controlling variables and lithology in particular. The Rhône Basin has been affected by spatially variable uplift, high orographically driven rainfalls and multiple glaciations. Furthermore, lithology and erodibility vary substantially within the basin. Thanks to high-resolution geological, climatic and topographic data, the Rhône Basin is a suitable laboratory to explore these complexities. Elevation, relief, slope and hypsometric data as well as river profile information from digital elevation models are used to characterize the landscape's topography of around 50 tributary basins. Additionally, uplift over different timescales, glacial inheritance, precipitation patterns and erodibility of the underlying bedrock are quantified for each basin. Results show that the chosen topographic and controlling variables vary remarkably between different tributary basins. We investigate the link between observed topographic differences and the possible controlling variables through statistical analyses. Variations of elevation, slope and relief seem to be linked to differences in long-term uplift rate, whereas elevation distributions (hypsometry) and river profile shapes may be related to glacial imprint. This confirms that the landscape of the Rhône Basin has been highly preconditioned by (past) uplift and glaciation. Linear discriminant analyses (LDAs), however, suggest a stronger link between observed topographic variations and differences in erodibility. We therefore conclude that despite evident glacial and tectonic conditioning, a lithologic control is still preserved and measurable in the landscape of the Rhône tributary basins.
Resumo:
-g.