915 resultados para lumen


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effects of ischemia on the maturation of secretory proteins are not well understood. Among several events that occur during ischemia-reperfusion are a rapid and extensive decrease in ATP levels and an alteration of cellular oxidative state. Since the normal folding and assembly of secretory proteins are mediated by endoplasmic reticulum (ER) molecular chaperones, the function of which depends on ATP and maintenance of an appropriate redox environment, ischemia might be expected to perturb folding of secretory proteins. In this study, whole animal and cultured cell models for the epithelial ischemic state were used to examine this possibility. After acute kidney ischemia, marked increases in the mRNA levels of the ER chaperones glucose-regulated protein (grp)78/immunoglobulin-binding protein (BiP), grp94, and ER protein (ERp)72 were noted. Likewise, when cellular ATP was depleted to less than 10% of control with antimycin A, mRNA levels of BiP, ERp72, and grp94 were increased in kidney and thyroid epithelial cell culture models. Since the signal for the up-regulation of these stress proteins is believed to be the accumulation of misfolded/misassembled secretory proteins in the ER, their induction after ischemia in vivo and antimycin treatment of cultured cells suggests that maturation of secretory proteins in the ER lumen might indeed be perturbed. To analyze the effects of antimycin A on the maturation of secretory proteins, we studied the fate of thyroglobulin (Tg), a large oligomeric secretory glycoprotein, the folding and assembly of which seems to require a variety of ER chaperones. Treatment of cultured thyroid epithelial cells with antimycin A greatly inhibited ( > 90%) the secretion of Tg. Sucrose density gradient analysis revealed that in antimycin A-treated cells Tg associates into large macromolecular complexes which, by immunofluorescence, appeared to localize to the ER. Furthermore, coimmunoprecipitation studies after antimycin A treatment demonstrated that Tg stably associates with BiP, grp94, and ERp72. Together, our results suggest that a key cellular lesion in ischemia is the misfolding of secretory proteins as they transit the ER, and this leads not only to increased expression of ER chaperones but also to their stable association with and the subsequent retention of at least some misfolded secretory proteins.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The core oligosaccharide Glc3Man9GlcNAc2 is assembled at the membrane of the endoplasmic reticulum on the lipid carrier dolichyl pyrophosphate and transferred to selected asparagine residues of nascent polypeptide chains. This transfer is catalyzed by the oligosaccharyl transferase complex. Based on the synthetic phenotype of the oligosaccharyl transferase mutation wbp1 in combination with a deficiency in the assembly pathway of the oligosaccharide in Saccharomyces cerevisiae, we have identified the novel ALG9 gene. We conclude that this locus encodes a putative mannosyl transferase because deletion of the gene led to accumulation of lipid-linked Man6GlcNAc2 in vivo and to hypoglycosylation of secreted proteins. Using an approach combining genetic and biochemical techniques, we show that the assembly of the lipid-linked core oligosaccharide in the lumen of the endoplasmic reticulum occurs in a stepwise fashion.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Plants need to avoid or dissipate excess light energy to protect photosystem II (PSII) from photoinhibitory damage. Higher plants have a conserved system that dissipates excess energy as heat in the light-harvesting complexes of PSII that depends on the transthylakoid delta pH and violaxanthin de-epoxidase (VDE) activity. To our knowledge, we report the first cloning of a cDNA encoding VDE and expression of functional enzyme in Escherichia coli. VDE is nuclear encoded and has a transit peptide with characteristic features of other lumen-localized proteins. The cDNA encodes a putative polypeptide of 473 aa with a calculated molecular mass of 54,447 Da. Cleavage of the transit peptide results in a mature putative polypeptide of 348 aa with a calculated molecular mass of 39,929 Da, close to the apparent mass of the purified enzyme (43 kDa). The protein has three interesting domains including (i) a cysteine-rich region, (ii) a lipocalin signature, and (iii) a highly charged region. The E. coli expressed enzyme de-epoxidizes violaxanthin sequentially to antheraxanthin and zeaxanthin, and is inhibited by dithiothreitol, similar to VDE purified from chloroplasts. This confirms that the cDNA encodes an authentic VDE of a higher plant and is unequivocal evidence that the same enzyme catalyzes the two-step mono de-epoxidation reaction. The cloning of VDE opens new opportunities for examining the function and evolution of the xanthophyll cycle, and possibly enhancing light-stress tolerance of plants.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The mannan chains of Kluyveromyces lactis mannoproteins are similar to those of Saccharomyces cerevisiae except that they lack mannose phosphate and have terminal alpha1-->2-linked N-acetylglucosamine. The biosynthesis of these chains probably occurs in the lumen of the Golgi apparatus, by analogy to S. cerevisiae. The sugar donors, GDP-mannose and UDP-GlcNAc, must first be transported from the cytosol, their site of synthesis, via specific Golgi membrane transporters into the lumen where they are substrates in the biosynthesis of these mannoproteins. A mutant of K. lactis, mnn2-2, that lacks terminal N-acetylglucosamine in its mannan chains in vivo, has recently been characterized and shown to have a specific defect in transport of UDP-GlcNAc into the lumen of Golgi vesicles in vitro. We have now cloned the gene encoding the K. lactis Golgi membrane UDP-GlcNAc transporter by complementation of the mnn2-2 mutation. The mnn2-2 mutant was transformed with a genomic library from wild-type K. lactis in a pKD1-derived vector; transformants were isolated and phenotypic correction was monitored following cell surface labeling with fluorescein isothiocyanate conjugated to Griffonia simplicifolia II lectin, which binds terminal N-acetylglucosamine, and a fluorescent activated cell sorter. A 2.4-kb DNA fragment was found to restore the wild-type lectin binding phenotype. Upon loss of the plasmid containing this fragment, reversion to the mutant phenotype occurred. The above fragment contained an open reading frame for a multitransmembrane spanning protein of 328 amino acids. The protein contains a leucine zipper motif and has high homology to predicted proteins from S. cerevisiae and C. elegans. In an assay in vitro, Golgi vesicles isolated from the transformant had regained their ability to transport UDP-GlcNAc. Taken together, the above results strongly suggest that the cloned gene encodes the Golgi UDP-GlcNAc transporter of K. lactis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cyclooxygenases (COXs) 1 and 2 are 72-kDa, intralumenal residents of the endoplasmic reticulum (ER) and nuclear envelope, where they catalyze the rate-limiting steps in the conversion of arachidonate to the physiologically dynamic prostanoids. Recent studies, including the generation of knockout mice, show COX-1 and COX-2 to have biologically distinct roles within cells and organisms. Also apparent is that arachidonate substrate is selectably metabolized by COX-2 after mitogen stimulation in many cells that contain both isoforms. Because COX-1 and COX-2 are highly conserved in all residues needed for catalysis and in their purified forms have almost identical kinetic properties, we have searched for COX-interacting ER proteins that might mediate these unique isoenzymic properties. Using COXs as bait in the yeast two-hybrid system, we identified autoimmunity- and apoptosis-associated nucleobindin (Nuc) as a protein that specifically interacts with both isoenzymes. COX-Nuc binding was substantiated by immunoprecipitation experiments, which showed that COX-1 and, to a lesser extent, COX-2 form complexes with Nuc in vitro. When overexpressed in COS-1 cells, Nuc was found to be extracellularly released. However, when Nuc was co-overexpressed with COX-1 or COX-2, its release was reduced by >80%. This finding suggests that COX isoenzymes participate in the retention of Nuc within the lumen of the ER, where COX may regulate the release of Nuc from the cell. It also identifies Nuc as a potential regulator of COXs through this interaction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report on a procedure for tissue preparation that combines thoroughly controlled physical and chemical treatments: quick-freezing and freeze-drying followed by fixation with OsO4 vapors and embedding by direct resin infiltration. Specimens of frog cutaneous pectoris muscle thus prepared were analyzed for total calcium using electron spectroscopic imaging/electron energy loss spectroscopy (ESI/EELS) approach. The preservation of the ultrastructure was excellent, with positive K/Na ratios revealed in the fibers by x-ray microanalysis. Clear, high-resolution EELS/ESI calcium signals were recorded from the lumen of terminal cisternae of the sarcoplasmic reticulum but not from longitudinal cisternae, as expected from previous studies carried out with different techniques. In many mitochondria, calcium was below detection whereas in others it was appreciable although at variable level. Within the motor nerve terminals, synaptic vesicles as well as some cisternae of the smooth endoplasmic reticulum yielded positive signals at variance with mitochondria, that were most often below detection. Taken as a whole, the present study reveals the potential of our experimental approach to map with high spatial resolution the total calcium within individual intracellular organelles identified by their established ultrastructure, but only where the element is present at high levels.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The transport of solutes between blood and brain is regulated by a specific barrier. Capillary endothelial cells of brain are known to mediate barrier function and facilitate transport. Here we report that specific cells surrounding arterioles, known as Mato's fluorescent granular perithelial (FGP) cells or perivascular microglial cells, contribute to the barrier function. Immunohistochemical and in situ hybridization studies indicate that, in normal brain cortex, type I and type II macrophage scavenger receptors are expressed only in FGP/perivascular microglial cells, and surface markers of macrophage lineage are also detected on them. These cells mediate the uptake of macromolecules, including modified low density lipoprotein, horseradish peroxidase, and ferritin injected either into the blood or into the cerebral ventricles. Accumulation of scavenged materials with aging or after the administration of a high-fat diet results in the formation of honeycomb-like foam cells and the narrowing of the lumen of arterioles in the brain cortex. These results indicate involvement of FGP/perivascular microglial cells in the barrier and scavenger functions in the central nervous system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We previously demonstrated that the putative oncogene AKT2 is amplified and overexpressed in some human ovarian carcinomas. We have now identified amplification of AKT2 in approximately 10% of pancreatic carcinomas (2 of 18 cell lines and 1 of 10 primary tumor specimens). The two cell lines with altered AKT2 (PANC1 and ASPC1) exhibited 30-fold and 50-fold amplification of AKT2, respectively, and highly elevated levels of AKT2 RNA and protein. PANC1 cells were transfected with antisense AKT2, and several clones were established after G418 selection. The expression of AKT2 protein in these clones was greatly decreased by the antisense RNA. Furthermore, tumorigenicity in nude mice was markedly reduced in PANC1 cells expressing antisense AKT2 RNA. To examine further whether overexpression of AKT2 plays a significant role in pancreatic tumorigenesis, PANC1 cells and ASPC1 cells, as well as pancreatic carcinoma cells that do not overexpress AKT2 (COLO 357), were transfected with antisense AKT2, and their growth and invasiveness were characterized by a rat tracheal xenotransplant assay. ASPC1 and PANC1 cells expressing antisense AKT2 RNA remained confined to the tracheal lumen, whereas the respective parental cells invaded the tracheal wall. In contrast, no difference was seen in the growth pattern between parental and antisense-treated COLO 357 cells. These data suggest that overexpression of AKT2 contributes to the malignant phenotype of a subset of human ductal pancreatic cancers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The final step in the pathway that provides for glycosylphosphatidylinositol (GPI) anchoring of cell-surface proteins occurs in the lumen of the endoplasmic reticulum and consists of a transamidation reaction in which fully assembled GPI anchor donors are substituted for specific COOH-terminal signal peptide sequences contained in nascent polypeptides. In previous studies we described a human K562 cell mutant line, designated class K, which assembles all the known intermediates of the GPI pathway but fails to display GPI-anchored proteins on its surface membrane. In the present study, we used mRNA encoding miniPLAP, a truncated form of placental alkaline phosphatase (PLAP), in in vitro assays with rough microsomal membranes (RM) of mutant K cells to further characterize the biosynthetic defect in this line. We found that RM from mutant K cells supported NH2-terminal processing of the nascent translational product, preprominiPLAP, but failed to show any detectable COOH-terminal processing of the resulting prominiPLAP to GPI-anchored miniPLAP. Proteinase K protection assays verified that NH2-terminal processed prominiPLAP was appropriately translocated into the endoplasmic reticulum lumen. The addition of hydrazine or hydroxylamine, which can substitute for GPI donors, to RM from wild-type or mutant cells defective in various intermediate biosynthetic steps in the GPI pathway produced large amounts of the hydrazide or hydroxamate of miniPLAP. In contrast, the addition of these nucleophiles to RM of class K cells yielded neither of these products. These data, taken together, lead us to conclude that mutant K cells are defective in part of the GPI transamidase machinery.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study examines the question of whether apolipoprotein E (apoE) alters steady-state concentrations of plasma cholesterol carried in low density lipoproteins (LDL-C) by acting as a competitive inhibitor of hepatic LDL uptake or by altering the rate of net cholesterol delivery from the intestinal lumen to the liver. To differentiate between these two possibilities, rates of cholesterol absorption and synthesis and the kinetics of hepatic LDL-C transport were measured in vivo in mice with either normal (apoE+/+) or zero (apoE-/-) levels of circulating apoE. Rates of cholesterol absorption were essentially identical in both genotypes and equaled approximately 44% of the daily dietary load of cholesterol. This finding was consistent with the further observation that the rates of cholesterol synthesis in the liver (approximately 2,000 nmol/h) and extrahepatic tissues (approximately 3,000 nmol/h) were also essentially identical in the two groups of mice. However, the apparent Michaelis constant for receptor-dependent hepatic LDL-C uptake was markedly lower in the apoE-/- mice (44 +/- 4 mg/dl) than in the apoE+/+ animals (329 +/- 77 mg/dl) even though the maximal transport velocity for this uptake process was essentially the same (approximately 400 micrograms/h per g) in the two groups of mice. These studies, therefore, demonstrate that apoE-containing lipoproteins can act as potent competitive inhibitors of hepatic LDL-C transport and so can significantly increase steady-state plasma LDL-C levels. This apolipoprotein plays no role, however, in the regulation of cholesterol absorption, sterol biosynthesis, or hepatic LDL receptor number, at least in the mouse.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The role of basolateral membrane Na+/H+ exchange in transepithelial HCO3- absorption (JHCO3) was examined in the isolated, perfused medullary thick ascending limb (MTAL) of the rat. In Na(+)-free solutions, addition of Na+ to the bath resulted in a rapid, amiloride-sensitive increase in intracellular pH. In MTALs perfused and bathed with solutions containing 146 mM Na+ and 25 mM HCO3-, bath addition of amiloride (1 mM) or 5-(N-ethyl-N-isopropyl) amiloride (EIPA, 50 microM) reversibly inhibited JHCO3 by 50%. Evidence that the inhibition of JHCO3 by bath amiloride was the result of inhibition of Na+/H+ exchange included the following: (i) the IC50 for amiloride was 5-10 microM, (ii) EIPA was a 50-fold more potent inhibitor than amiloride, (iii) the inhibition by bath amiloride was Na+ dependent, and (iv) significant inhibition was observed with EIPA as low as 0.1 microM. Fifty micromolar amiloride or 1 microM EIPA inhibited JHCO3 by 35% when added to the bath but had no effect when added to the tubule lumen, indicating that addition of amiloride to the bath did not directly inhibit apical membrane Na+/H+ exchange. In experiments in which apical Na+/H+ exchange was assessed from the initial rate of cell acidification following luminal EIPA addition, bath EIPA secondarily inhibited apical Na+/H+ exchange activity by 46%. These results demonstrate basolateral membrane Na+/H+ exchange enhances transepithelial HCO3- absorption in the MTAL. This effect appears to be the result of cross-talk in which an increase in basolateral membrane Na+/H+ exchange activity secondarily increases apical membrane Na+/H+ exchange activity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fermentation of nonabsorbed nutrients in the colon generates high concentrations of NH3/NH4+ in the colonic lumen. NH3 is a small, lipophilic neutral weak base that readily permeates almost all cell membranes, whereas its conjugate weak acid NH4+ generally crosses membranes much more slowly. It is not known how colonocytes maintain intracellular pH in the unusual acid-base environment of the colon, where permeant acid-base products of fermentation exist in high concentration. To address this issue, we hand dissected and perfused single, isolated crypts from rabbit proximal colon, adapting techniques from renal-tubule microperfusion. Crypt perfusion permits control of solutions at the apical (luminal) and basolateral (serosal) surfaces of crypt cells. We assessed apical- vs. basolateral-membrane transport of NH3/NH4+ by using fluorescent dyes and digital imaging to monitor intracellular pH of microvacuolated crypt cells as well as luminal pH. We found that, although the basolateral membranes have normal NH3/NH4+ permeability properties, there is no evidence for transport of either NH3 or NH4+ across the apical borders of these crypt cells. Disaggregating luminal mucus did not increase the transport of NH3/NH4+ across the apical border. We conclude that, compared to the basolateral membrane, the apical border of crypt colonocytes has a very low permeability-area product for NH3/NH4+. This barrier may represent an important adaptation for the survival of crypt cells in the environment of the colon.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two interacting heat shock cognate proteins in the lumen of the yeast endoplasmic reticulum (ER), Sec63p and BiP (Kar2p), are required for posttranslational translocation of yeast alpha-factor precursor in vitro. To investigate the role of these proteins in cotranslational translocation, we examined the import of invertase into wild-type, sec63, and kar2 mutant yeast membranes. We found that Sec63p and Kar2p are necessary for both co- and posttranslational translocation in yeast. Several kar2 mutants, one of which had normal ATPase activity, were defective in cotranslational translocation of invertase. We conclude that the requirement for BiP/Kar2p, which is not seen in a reaction reconstituted with pure mammalian membrane proteins [Görlich, D. & Rapoport, T.A. (1993) Cell 75, 615-630], is not due to a distinction between cotranslational translocation in mammalian cells and posttranslational translocation in yeast cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We describe the isolation and characterization of cDNAs encoding the precursor polypeptide of the 6.1-kDa polypeptide associated with the reaction center core of the photosystem II complex from spinach. PsbW, the gene encoding this polypeptide, is present in a single copy per haploid genome. The mature polypeptide with 54 amino acid residues is characterized by a hydrophobic transmembrane segment, and, although an intrinsic membrane protein, it carries a bipartite transit peptide of 83 amino acid residues which directs the N terminus of the mature protein into the chloroplast lumen. Thylakoid integration of this polypeptide does not require a delta pH across the membrane, nor is it azide-sensitive, suggesting that the polypeptide chain inserts spontaneously in an as yet unknown way. The PsbW mRNA levels are light regulated. Similar to cytochrome b559 and PsbS, but different from the chlorophyll-complexing polypeptides D1, D2, CP43, and CP47 of photosystem II, PsbW is present in etiolated spinach seedlings.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Vascular endothelial growth factor (VEGF) is a potent and specific endothelial mitogen that is able to induce angiogenesis in vivo [Leung, D. W., Cachianes, G., Kuang, W.-J., Goeddel, D. V. & Ferrara, N. (1989) Science 246 1306-1309]. To determine if VEGF also influences the behavior of primordial endothelial cells, we used an in vivo vascular assay based on the de novo formation of vessels. Japanese quail embryos injected with nanomolar quantities of the 165-residue form of VEGF at the onset of vasculogenesis exhibited profoundly altered vessel development. In fact, the overall patterning of the vascular network was abnormal in all VEGF-injected embryos. The malformations were attributable to two specific endothelial cell activities: (i) inappropriate neovascularization in normally avascular areas and (ii) the unregulated, excessive fusion of vessels. In the first instance, supernumerary vessels directly linked the inflow channel of the heart to the aortic outflow channel. The second aberrant activity led to the formation of vessels with abnormally large lumens. Ultimately, unregulated vessel fusion generated massive vascular sacs that obliterated the identity of individual vessels. These observations show that exogenous VEGF has an impact on the behavior of primordial endothelial cells engaged in vasculogenesis, and they strongly suggest that endogenous VEGF is important in vascular patterning and regulation of vessel size (lumen formation).