957 resultados para localized exitons


Relevância:

10.00% 10.00%

Publicador:

Resumo:

VEGF plays an essential role in ocular angiogenic diseases including the late-stage form of AMD, the primary cause of vision loss in the western world. Over-expression of VEGF leads to development of vasculature emanating from the choroid, invading the subretinal space through breaks in Bruch's membrane. Strategies leading to long-term suppression of inappropriate ocular angiogenesis are required. A panel of 10 shRNAs targeting the coding region of human VEGF165 was tested in HEK293 cells and in the human retinal pigment epithelial cell line, ARPE-19. VEGF knock-down up to 92% was achieved by co-transfecting shRNAexpressing constructs with plasmid encoding the Renilla luciferase gene fused to the VEGF165 sequence. For in vivo delivery of the most potent shRNA cassette, both single-stranded and self-complementary rAAV vectors were packaged in serotype 8 capsids. Intramuscular administration in mice led to localized expression and 96% knock-down of endogenous VEGF. Using eGFP as a marker, efficient gene transfer of retinal pigment epithelial cells, the cells thought to be responsible for the abnormal VEGF production, was obtained by subretinal delivery of rAAV2.8 vectors. The capacity of rAAV-encoded shRNAs to silence endogenous VEGF gene expression was evaluated in the laser-induced murine model of choroidal neovascularization (CNV). In this mouse model of AMD, sizes of the CNV were found to be significantly reduced following rAAV-shRNA subretinal delivery. Thus, our results indicate that gene transfer combining AAV-mediated delivery with triggering of the endogenous RNAi pathway can be used for anti-VEGF therapy and holds great promise for the treatment of AMD.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

GLUTX1 or GLUT8 is a newly characterized glucose transporter isoform that is expressed at high levels in the testis and brain and at lower levels in several other tissues. Its expression was mapped in the testis and brain by using specific antibodies. In the testis, immunoreactivity was expressed in differentiating spermatocytes of type 1 stage but undetectable in mature spermatozoa. In the brain, GLUTX1 distribution was selective and localized to a variety of structures, mainly archi- and paleocortex. It was found in hippocampal and dentate gyrus neurons as well as amygdala and primary olfactory cortex. In these neurons, its location was close to the plasma membrane of cell bodies and sometimes in proximal dendrites. High GLUTX1 levels were detected in the hypothalamus, supraoptic nucleus, median eminence, and the posterior pituitary. Neurons of these areas synthesize and secrete vasopressin and oxytocin. As shown by double immunofluorescence microscopy and immunogold labeling, GLUTX1 was expressed only in vasopressin neurons. By immunogold labeling of ultrathin cryosections microscopy, GLUTX1 was identified in dense core vesicles of synaptic nerve endings of the supraoptic nucleus and secretory granules of the vasopressin positive neurons. This localization suggests an involvement of GLUTX1 both in specific neuron function and endocrine mechanisms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PURPOSE: At 7 Tesla (T), conventional static field (B0 ) projection mapping techniques, e.g., FASTMAP, FASTESTMAP, lead to elevated specific absorption rates (SAR), requiring longer total acquisition times (TA). In this work, the series of adiabatic pulses needed for slab selection in FASTMAP is replaced by a single two-dimensional radiofrequency (2D-RF) pulse to minimize TA while ensuring equal shimming performance. METHODS: Spiral gradients and 2D-RF pulses were designed to excite thin slabs in the small tip angle regime. The corresponding selection profile was characterized in phantoms and in vivo. After optimization of the shimming protocol, the spectral linewidths obtained after 2D localized shimming were compared with conventional techniques and published values from (Emir et al NMR Biomed 2012;25:152-160) in six different brain regions. RESULTS: Results on healthy volunteers show no significant difference (P > 0.5) between the spectroscopic linewidths obtained with the adiabatic (TA = 4 min) and the new low-SAR and time-efficient FASTMAP sequence (TA = 42 s). The SAR can be reduced by three orders of magnitude and TA accelerated six times without impact on the shimming performances or quality of the resulting spectra. CONCLUSION: Multidimensional pulses can be used to minimize the RF energy and time spent for automated shimming using projection mapping at high field. Magn Reson Med, 2014. © 2014 Wiley Periodicals, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Protein oxidation and ubiquitination of brain proteins are part of mechanisms that modulate protein function or that inactivate proteins and target misfolded proteins to degradation. In this study, we focused on brain aging and on mechanism involved in neurodegeneration such as events occurring in Alzheimer's disease (AD). The goal was to identify differences in nitrosylated proteins - at cysteine residues, and in the composition of ubiquinated proteins between aging and Alzheimer's samples by using a proteomic approach. A polyclonal anti-S-nitrosyl-cysteine, a mono- and a polyclonal anti-ubiquitin antibody were used for the detection of modified or ubiquitinated proteins in middle-aged and aged human entorhinal autopsy brains tissues of 14 subjects without neurological signs and 8 Alzheimer's patients. Proteins were separated by one- and two-dimensional gel electrophoresis and analyzed by Coomassie blue and immuno-blot staining. We identified that the glial fibrillary acidic and tau proteins are more ubiquitinated in brain tissues of Alzheimer's patients. Furthermore, glial fibrillary proteins were also found in nitrosylated state and further characterized by 2D Western blots and identified. Since reactive astrocytes localized prominently around senile plaques one can speculate that elements of plaques such as beta-amyloid proteins may activate surrounding glial elements and proteins.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction: Survival of children born prematurely or with very low birth weight has increased dramatically, but the long term developmental outcome remains unknown. Many children have deficits in cognitive capacities, in particular involving executive domains and those disabilities are likely to involve a central nervous system deficit. To understand their neurostructural origin, we use DTI. Structurally segregated and functionally regions of the cerebral cortex are interconnected by a dense network of axonal pathways. We noninvasively map these pathways across cortical hemispheres and construct normalized structural connection matrices derived from DTI MR tractography. Group comparisons of brain connectivity reveal significant changes in fiber density in case of children with poor intrauterine grown and extremely premature children (gestational age<28 weeks at birth) compared to control subjects. This changes suggest a link between cortico-axonal pathways and the central nervous system deficit. Methods: Sixty premature born infants (5-6 years old) were scanned on clinical 3T scanner (Magnetom Trio, Siemens Medical Solutions, Erlangen, Germany) at two hospitals (HUG, Geneva and CHUV, Lausanne). For each subject, T1-weighted MPRAGE images (TR/TE=2500/2.91,TI=1100, resolution=1x1x1mm, matrix=256x154) and DTI images (30 directions, TR/TE=10200/107, in-plane resolution=1.8x1.8x2mm, 64 axial, matrix=112x112) were acquired. Parent(s) provided written consent on prior ethical board approval. The extraction of the Whole Brain Structural Connectivity Matrix was performed following (Cammoun, 2009 and Hagmann, 2008). The MPARGE images were registered using an affine registration to the non-weighted-DTI and WM-GM segmentation performed on it. In order to have equal anatomical localization among subjects, 66 cortical regions with anatomical landmarks were created using the curvature information, i.e. sulcus and gyrus (Cammoun et al, 2007; Fischl et al, 2004; Desikan et al, 2006) with freesurfer software (http://surfer.nmr.mgh.harvard.edu/). Tractography was performed in WM using an algorithm especially designed for DTI/DSI data (Hagmann et al., 2007) and both information were then combined in a matrix. Each row and column of the matrix corresponds to a particular ROI. Each cell of index (i,j) represents the fiber density of the bundle connecting the ROIs i and j. Subdividing each cortical region, we obtained 4 Connectivity Matrices of different resolution (33, 66, 125 and 250 ROI/hemisphere) for each subject . Subjects were sorted in 3 different groups, namely (1) control, (2) Intrauterine Growth Restriction (IUGR), (3) Extreme Prematurity (EP), depending on their gestational age, weight and percentile-weight score at birth. Group-to-group comparisons were performed between groups (1)-(2) and (1)-(3). The mean age at examination of the three groups were similar. Results: Quantitative analysis were performed between groups to determine fibers density differences. For each group, a mean connectivity matrix with 33ROI/hemisphere resolution was computed. On the other hand, for all matrix resolutions (33,66,125,250 ROI/hemisphere), the number of bundles were computed and averaged. As seen in figure 1, EP and IUGR subjects present an overall reduction of fibers density in both interhemispherical and intrahemispherical connections. This is given quantitatively in table 1. IUGR subjects presents a higher percentage of missing fiber bundles than EP when compared to control subjects (~16% against 11%). When comparing both groups to control subjects, for the EP subjects, the occipito-parietal regions seem less interhemispherically connected whilst the intrahemispherical networks present lack of fiber density in the lymbic system. Children born with IUGR, have similar reductions in interhemispherical connections than the EP. However, the cuneus and precuneus connections with the precentral and paracentral lobe are even lower than in the case of the EP. For the intrahemispherical connections the IUGR group preset a loss of fiber density between the deep gray matter structures (striatum) and the frontal and middlefrontal poles, connections typically involved in the control of executive functions. For the qualitative analysis, a t-test comparing number of bundles (p-value<0.05) gave some preliminary significant results (figure 2). Again, even if both IUGR and EP appear to have significantly less connections comparing to the control subjects, the IUGR cohort seems to present a higher lack of fiber density specially relying the cuneus, precuneus and parietal areas. In terms of fiber density, preliminary Wilcoxon tests seem to validate the hypothesis set by the previous analysis. Conclusions: The goal of this study was to determine the effect of extreme prematurity and poor intrauterine growth on neurostructural development at the age of 6 years-old. This data indicates that differences in connectivity may well be the basis for the neurostructural and neuropsychological deficit described in these populations in the absence of overt brain lesions (Inder TE, 2005; Borradori-Tolsa, 2004; Dubois, 2008). Indeed, we suggest that IUGR and prematurity leads to alteration of connectivity between brain structures, especially in occipito-parietal and frontal lobes for EP and frontal and middletemporal poles for IUGR. Overall, IUGR children have a higher loss of connectivity in the overall connectivity matrix than EP children. In both cases, the localized alteration of connectivity suggests a direct link between cortico-axonal pathways and the central nervous system deficit. Our next step is to link these connectivity alterations to the performance in executive function tests.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

By regulating the metabolism of fatty acids, carbohydrates, and xenobiotic, the mammalian circadian clock plays a fundamental role on the liver physiology. At present, it is supposed that the circadian clock regulates metabolism mostly by regulating the expression of liver enzymes at the transcriptional level. However, recent evidences suggest that some signaling pathways synchronized by the circadian clock can also influence metabolism at a post-transcriptional level. In this context, we have recently shown that the circadian clock synchronizes the rhythmic activation of the IRE1alpha pathway in the endoplasmic reticulum. The absence of circadian clock perturbs this secondary clock, provokes deregulation of endoplasmic reticulum-localized enzymes, and leads to impaired lipid metabolism. We will describe here the additional pathways synchronized by the clock and discussed the influence of the circadian clock-controlled feeding rhythm on them.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Humans experience the self as localized within their body. This aspect of bodily self-consciousness can be experimentally manipulated by exposing individuals to conflicting multisensory input, or can be abnormal following focal brain injury. Recent technological developments helped to unravel some of the mechanisms underlying multisensory integration and self-location, but the neural underpinnings are still under investigation, and the manual application of stimuli resulted in large variability difficult to control. This paper presents the development and evaluation of an MR-compatible stroking device capable of presenting moving tactile stimuli to both legs and the back of participants lying on a scanner bed while acquiring functional neuroimaging data. The platform consists of four independent stroking devices with a travel of 16-20 cm and a maximum stroking velocity of 15 cm/s, actuated over non-magnetic ultrasonic motors. Complemented with virtual reality, this setup provides a unique research platform allowing to investigate multisensory integration and its effects on self-location under well-controlled experimental conditions. The MR-compatibility of the system was evaluated in both a 3 and a 7 Tesla scanner and showed negligible interference with brain imaging. In a preliminary study using a prototype device with only one tactile stimulator, fMRI data acquired on 12 healthy participants showed visuo-tactile synchrony-related and body-specific modulations of the brain activity in bilateral temporoparietal cortex.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study we focused our attention on the behavior of four nuclear matrix proteins during the various stages of apoptosis in the HL-60 cell line exposed to the DNA topoisomerase I inhibitor, camptothecin. We have examined the following antigens by immunocytochemical techniques: (i) the 180-kDa nucleolar isoform of DNA topoisomerase II; (ii) a 126-kDa polypeptide of nuclear bodies; (iii) a 125-kDa protein; and (iv) a 160-kDa polypeptide which are known to be components of the matrix inner network. Indirect immunofluorescence experiments were performed to follow these nuclear matrix antigens during apoptosis. Moreover, the ultrastructural localization of both 125- and 160-kDa proteins was investigated by electron microscope immunocytochemistry with gold-conjugated secondary antibodies. While the antibody to the nucleolar isoform of DNA topoisomerase II gave a fluorescent pattern that was well-maintained until the late phases of apoptosis, the other three nuclear antigens showed marked modifications in their distribution. A common feature, particularly evident for 125- and 160-kDa proteins, was their absence from cap-shaped chromatin marginations, whereas they were present in the areas of remaining decondensed chromatin. The 126-kDa polypeptide concentrated progressively in an irregular mass at the opposite side of the crescentic caps and then broke up in fine spots. The 125- and 160-kDa proteins localized in the nucleolus and precisely within certain granules which are known to appear in the nucleolar area after camptothecin administration. These results show that, in addition to the well-known chromatin changes, nuclear organization undergoes other rearrangements during the apoptotic process.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Where and when cells divide are fundamental questions. In rod-shaped fission yeast cells, the DYRK-family kinase Pom1 is organized in concentration gradients from cell poles and controls cell division timing and positioning. Pom1 gradients restrict to mid-cell the SAD-like kinase Cdr2, which recruits Mid1/Anillin for medial division. Pom1 also delays mitotic commitment through Cdr2, which inhibits Wee1. Here, we describe quantitatively the distributions of cortical Pom1 and Cdr2. These reveal low profile overlap contrasting with previous whole-cell measurements and Cdr2 levels increase with cell elongation, raising the possibility that Pom1 regulates mitotic commitment by controlling Cdr2 medial levels. However, we show that distinct thresholds of Pom1 activity define the timing and positioning of division. Three conditions-a separation-of-function Pom1 allele, partial downregulation of Pom1 activity, and haploinsufficiency in diploid cells-yield cells that divide early, similar to pom1 deletion, but medially, like wild-type cells. In these cells, Cdr2 is localized correctly at mid-cell. Further, Cdr2 overexpression promotes precocious mitosis only in absence of Pom1. Thus, Pom1 inhibits Cdr2 for mitotic commitment independently of regulating its localization or cortical levels. Indeed, we show Pom1 restricts Cdr2 activity through phosphorylation of a C-terminal self-inhibitory tail. In summary, our results demonstrate that distinct levels in Pom1 gradients delineate a medial Cdr2 domain, for cell division placement, and control its activity, for mitotic commitment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The process of epidermal differentiation involves proliferation, differentiation, migration and maturation of keratinocytes to form an impermeable barrier against water loss and outside environment. It is controlled by highly balanced regulatory machinery, involving many molecules that are still under investigation.Homeobox proteins are involved in body patterning and morphogenesis of organs and are studied as potentially good candidates to regulate this process. In the first project we investigated the role of a protein named HOP which belongs to a group of homeobox proteins. Even if HOP is a small protein almost completely composed of the homeodomain and without DNA binding capacity, it is considered as transcriptional regulator in different tissues. HOP interacts with serum response factor (SRF) and histone deacetylase type 2 (HDAC2). By microarray analysis we found that HOP expression increases in cultured human primary keratinocytes (NHK) which undergo calcium-induced differentiation. HOP protein was localized in granular layer of the epidermis of healthy individuals. Lack of HOP was demonstrated in psoriatic lesions, whereas a strong expression was demonstrated in the lesional skin of patients affected with lichen planus (LP). Since LP is characterized by hypergranulosis while psoriatic lesions by progressive lack of the granular layer, the obtained data indicated that HOP might have a potential function in granular layer of epidermis. To investigate HOP function, we inhibited its expression by using HOP specific StealthRNAi and we overexpressed HOP using lentiviral vectors in differentiating NHK. The conclusion of both experiments indicated that HOP positively regulates the expression of late differentiation markers, such as profilaggrin, loricrin and transglutaminase 1. The in vitro data were next confirmed in vivo using HOP knockout mouse model.The second part of my study involved analysis of mechanisms underlying the pathogenesis of epidermolytic hyperkeratosis (EHK). EHK is a genetic disorder characterized by erythema, skin blistering, keratinocyte hyperproliferation and hyperkeratosis. EHK is caused by mutations in keratin 1 or 10 (K1, K10) which are major structural proteins of differentiated keratinocytes and participate in the cellular scaffold formation. To investigate how the structural proteins carrying mutations alter cellular signaling, we established an in vitro model for EHK by overexpression of one of the most common K10 mutations reported so far (K10R156H), in primary human keratinocytes. In order to mimic the in vivo situation, mutated keratinocytes growing on silicone membranes were subjected to mechanical stretch. We observed strong collapse of KIF in K10R156H keratinocytes when subjected to stretch for 30 minutes. Our data demonstrated stronger activation of p38, a member of MAPK stress signaling pathways, in K10R156H when compared to control cells. We demonstrated also that K10R156H keratinocytes showed an induction of TNF-α and RANTES release in response to stretch.Taken together these studies characterize a novel regulator of epidermal differentiation - HOP and demonstrate new aspects implicated in the pathogenesis of EHK.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We use cryo-electron microscopy (cryo-EM) to study the 3D shapes of 94-bp-long DNA minicircles and address the question of whether cyclization of such short DNA molecules necessitates the formation of sharp, localized kinks in DNA or whether the necessary bending can be redistributed and accomplished within the limits of the elastic, standard model of DNA flexibility. By comparing the shapes of covalently closed, nicked and gapped DNA minicircles, we conclude that 94-bp-long covalently closed and nicked DNA minicircles do not show sharp kinks while gapped DNA molecules, containing very flexible single-stranded regions, do show sharp kinks. We corroborate the results of cryo-EM studies by using Bal31 nuclease to probe for the existence of kinks in 94-bp-long minicircles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recombinant adeno-associated virus (rAAV) vectors mediating long term transgene expression are excellent gene therapy tools for chronic neurological diseases. While rAAV2 was the first serotype tested in the clinics, more efficient vectors derived from the rh10 serotype are currently being evaluated and other serotypes are likely to be tested in the near future. In addition, aside from the currently used stereotaxy-guided intraparenchymal delivery, new techniques for global brain transduction (by intravenous or intra-cerebrospinal injections) are very promising. Various strategies for therapeutic gene delivery to the central nervous system have been explored in human clinical trials in the past decade. Canavan disease, a genetic disease caused by an enzymatic deficiency, was the first to be approved. Three gene transfer paradigms for Parkinson's disease have been explored: converting L-dopa into dopamine through AADC gene delivery in the putamen; synthesizing GABA through GAD gene delivery in the overactive subthalamic nucleus and providing neurotrophic support through neurturin gene delivery in the nigro-striatal pathway. These pioneer clinical trials demonstrated the safety and tolerability of rAAV delivery in the human brain at moderate doses. Therapeutic effects however, were modest, emphasizing the need for higher doses of the therapeutic transgene product which could be achieved using more efficient vectors or expression cassettes. This will require re-addressing pharmacological aspects, with attention to which cases require either localized and cell-type specific expression or efficient brain-wide transgene expression, and when it is necessary to modulate or terminate the administration of transgene product. The ongoing development of targeted and regulated rAAV vectors is described.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using an extract of nuclei from the estrogen-responsive human breast cancer cell line MCF-7, protein-DNA complexes were assembled in vitro at the 5' end of the Xenopus laevis vitellogenin gene B2 that is normally expressed in liver after estrogen induction. The complexes formed were analyzed by electron microscopy after labeling by the indirect colloidal gold immunological method using a monoclonal antibody specific for the human estrogen receptor. As identified by its interaction with protein A-gold, the antibody was found linked to two protein-DNA complexes, the first localized at the estrogen responsive element of the gene and the second in intron I, thus proving a direct participation of the receptor in these two complexes. The procedure used allows the visualization and rapid localization of specific transcription factors bound in vitro to a promoter or any other gene region.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The risk of malignant B cell lymphoma is increased in Sjögren's syndrome (SS). Orbital localization seems infrequent. We report 4 cases of malignant lymphoma (ML) occurring in 4 women aged 47 to 77 years, with primary SS in 3 cases, located to the conjunctiva in 2 cases, the lacrymal gland in 1 case and the eyelid in 1 case. The interval between the diagnosis of SS and orbital ML varied from 6 months to 15 years. All 4 lymphomas were of the B cell type, low histopathologic grade, with monoclonal gammopathy in 1 case. Extraocular lymphoma was initially present in 1 case. ML remained localized in 2 cases with a follow-up of 4 and 6 years. Two patients treated by excisional biopsy alone are in complete remission 3 and 6 years later. The 2 other patients treated with orbital radiotherapy and chemotherapy died rapidly (transformation into a high grade malignancy in 1 case). We conclude that clinical, immunopathologic features, as well as prognosis and treatment of ocular adnexa ML in SS are similar to those of primary ML without SS.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This report documents an extensive field program carried out to identify the relationships between soil engineering properties, as measured by various in situ devices, and the results of machine compaction monitoring using prototype compaction monitoring technology developed by Caterpillar Inc. Primary research tasks for this study include the following: (1) experimental testing and statistical analyses to evaluate machine power in terms of the engineering properties of the compacted soil (e.g., density, strength, stiffness) and (2) recommendations for using the compaction monitoring technology in practice. The compaction monitoring technology includes sensors that monitor the power consumption used to move the compaction machine, an on-board computer and display screen, and a GPS system to map the spatial location of the machine. In situ soil density, strength, and stiffness data characterized the soil at various stages of compaction. For each test strip or test area, in situ soil properties were compared directly to machine power values to establish statistical relationships. Statistical models were developed to predict soil density, strength, and stiffness from the machine power values. Field data for multiple test strips were evaluated. The R2 correlation coefficient was generally used to assess the quality of the regressions. Strong correlations were observed between averaged machine power and field measurement data. The relationships are based on the compaction model derived from laboratory data. Correlation coefficients (R2) were consistently higher for thicker lifts than for thin lifts, indicating that the depth influencing machine power response exceeds the representative lift thickness encountered under field conditions. Caterpillar Inc. compaction monitoring technology also identified localized areas of an earthwork project with weak or poorly compacted soil. The soil properties at these locations were verified using in situ test devices. This report also documents the steps required to implement the compaction monitoring technology evaluated.