922 resultados para load chains
Resumo:
Supply chain coordination (SCC) can be a challenge for many organizations as different firms in the same chain has different expectations and interdependencies (Arshinder & Deshmukh, 2008). Lack of SCC can result in the bullwhip effect and poor performance for a firm and its partners. By investigating the phenomenon in the Brazilian pharmaceutical supply chain using a qualitative research, this paper aims to understand the main issues that avoid a better integrated chain. Results of 21 interviews suggested that the lack of coordination in this environment was influenced by the network design and the history of the sector in Brazil, as well as scarce resources
Resumo:
The search for efficiency in supply chains has usually focused on logistic optimization aspects. Initiatives like the ECR are an example. This research questions the appropriateness of this focus comparing detailed cost structures of fifteen consumer products, covering five different product categories. It compares supply chains of private label products, presumably more efficient due to closer collaboration between chain members, to national brands supply chains. The major source of cost differences lies in other indirect costs incurred by the national brands and not directly assignable to advertising. Results indicate that a complete reconception of the supply chain, exploring different governance structures offers greater opportunities for cost savings than the logistic aspect in isolation. Research was done in the UK in 1995-1997, but results are only now publishable due to confidentiality agreements
Resumo:
The paper describes a novel neural model to electrical load forecasting in transformers. The network acts as identifier of structural features to forecast process. So that output parameters can be estimated and generalized from an input parameter set. The model was trained and assessed through load data extracted from a Brazilian Electric Utility taking into account time, current, tension, active power in the three phases of the system. The results obtained in the simulations show that the developed technique can be used as an alternative tool to become more appropriate for planning of electric power systems.
Resumo:
A neural approach to solve the problem defined by the economic load dispatch in power systems is presented in this paper, Systems based on artificial neural networks have high computational rates due to the use of a massive number of simple processing elements and the high degree of connectivity between these elements the ability of neural networks to realize some complex nonlinear function makes them attractive for system optimization the neural networks applyed in economic load dispatch reported in literature sometimes fail to converge towards feasible equilibrium points the internal parameters of the modified Hopfield network developed here are computed using the valid-subspace technique These parameters guarantee the network convergence to feasible quilibrium points, A solution for the economic load dispatch problem corresponds to an equilibrium point of the network. Simulation results and comparative analysis in relation to other neural approaches are presented to illustrate efficiency of the proposed approach.
Resumo:
In this paper an alternative method based on artificial neural networks is presented to determine harmonic components in the load current of a single-phase electric power system with nonlinear loads, whose parameters can vary so much in reason of the loads characteristic behaviors as because of the human intervention. The first six components in the load current are determined using the information contained in the time-varying waveforms. The effectiveness of this method is verified by using it in a single-phase active power filter with selective compensation of the current drained by an AC controller. The proposed method is compared with the fast Fourier transform.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
During the construction of five residential buildings in the city of Taubate, State of São Paulo, it was possible to carry out one comprehensive investigation of the behavior of precast concrete piles in clay shales. This paper describes the results of Dynamic Load Tests (DLT's) executed in three piles with different diameters and with the same embedded length. The tests were monitored using the PDA(R) (Pile Driving Analyzer) and the pile top displacement was measured by pencil and paper procedure. From the curves of RMX versus DMX resulted from CASE(R) method, CAPWAPC(R) analyses were made for signals where the maximum mobilized soil resistance was verified. The results were compared with the predicted bearing capacity using the semi-empirical method of Decourt & Quaresma (1978) and Decourt (1982) based on SPT values and the description of the soil profile. Some comments related to the values of quake and damping used for clay shales in the analyses are also presented.
Resumo:
The results of dynamic instrumentation in two construction sites that used steel rails as pile foundation are presented in this paper. The first dynamic load tests were executed in piles made by single steel rails of the type TR32 and TR37. In the second group of dynamic tests, the piles were made by a composition of two and three steel rails of the same type TR37. The difficulties in placing the sensors, the effect of hammer blow eccentricity and the influence of the non-uniform welding along the pile length are presented in detail and discussed.
Resumo:
The use of mean values of thermal and electric demand can be justifiable for synthesising the configuration and for estimating the economic results because it simplifies the analysis in a preliminary feasibility study of a cogeneration plant. For determining the cogeneration scheme that best fits the energetic needs of a process several cycles and combinations must be considered, and those technically feasible will be analysed according to economic models. Although interesting for a first approach, this procedure do not consider that the peaks and valleys present in the load patterns will impose additional constraints relatively to the equipment capacities. In this paper, the effects of thermal and electric load fluctuation to the cogeneration plant design were considered. An approach for modelling these load variability is proposed for comparing two competing thermal and electric parity competing schemes. A gas turbine associated to a heat recovery steam generator was then proposed and analysed for thermal- and electric-following operational strategies. Thermal-following option revealed to be more attractive for the technical and economic limits defined for this analysis. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
The fatigue crack behavior in metals and alloys under constant amplitude test conditions is usually described by relationships between the crack growth rate da/dN and the stress intensity factor range Delta K. In the present work, an enhanced two-parameter exponential equation of fatigue crack growth was introduced in order to describe sub-critical crack propagation behavior of Al 2524-T3 alloy, commonly used in aircraft engineering applications. It was demonstrated that besides adequately correlating the load ratio effects, the exponential model also accounts for the slight deviations from linearity shown by the experimental curves. A comparison with Elber, Kujawski and "Unified Approach" models allowed for verifying the better performance, when confronted to the other tested models, presented by the exponential model. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
This work describes a methodology for power factor control and correction of the unbalanced currents in four-wire electric circuits. The methodology is based on the insertion of two compensation networks, one wye-grounded neutral and another in delta, in parallel to the load. The mathematical development has been proposed in previous work [3]. In this paper, however, the methodology was adapted to accept different power factors for the system to be compensated. on the other hand, the determination of the compensation susceptances is based on the instantaneous values of the load currents. The results are obtained using the MatLab - Simulink environment.
Resumo:
The objective of this work is to develop a methodology for electric load forecasting based on a neural network. Here, backpropagation algorithm is used with an adaptive process that based on fuzzy logic and using a decaying exponential function to avoid instability in the convergence process. This methodology results in fast training, when compared to the conventional formulation of backpropagation algorithm. The results are presented using data from a Brazilian Electric Company, and shows a very good performance for the proposal objective.
Resumo:
This work presents a neural network based on the ART architecture ( adaptive resonance theory), named fuzzy ART& ARTMAP neural network, applied to the electric load-forecasting problem. The neural networks based on the ARTarchitecture have two fundamental characteristics that are extremely important for the network performance ( stability and plasticity), which allow the implementation of continuous training. The fuzzy ART& ARTMAP neural network aims to reduce the imprecision of the forecasting results by a mechanism that separate the analog and binary data, processing them separately. Therefore, this represents a reduction on the processing time and improved quality of the results, when compared to the Back-Propagation neural network, and better to the classical forecasting techniques (ARIMA of Box and Jenkins methods). Finished the training, the fuzzy ART& ARTMAP neural network is capable to forecast electrical loads 24 h in advance. To validate the methodology, data from a Brazilian electric company is used. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
In this paper we present the results of the use of a methodology for multinodal load forecasting through an artificial neural network-type Multilayer Perceptron, making use of radial basis functions as activation function and the Backpropagation algorithm, as an algorithm to train the network. This methodology allows you to make the prediction at various points in power system, considering different types of consumers (residential, commercial, industrial) of the electric grid, is applied to the problem short-term electric load forecasting (24 hours ahead). We use a database (Centralised Dataset - CDS) provided by the Electricity Commission de New Zealand to this work.