937 resultados para liquid chromatography–mass spectrometry (LC-MS)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background and Aims Leafy vegetable Brassica crops are an important source of dietary calcium (Ca) and magnesium (Mg) and represent potential targets for increasing leaf Ca and Mg concentrations through agronomy or breeding. Although the internal distribution of Ca and Mg within leaves affects the accumulation of these elements, such data are not available for Brassica. The aim of this study was to characterize the internal distribution of Ca and Mg in the leaves of a vegetable Brassica and to determine the effects of altered exogenous Ca and Mg supply on this distribution. Methods Brassica rapa ssp. trilocularis ‘R-o-18’ was grown at four different Ca:Mg treatments for 21 d in a controlled environment. Concentrations of Ca and Mg were determined in fully expanded leaves using inductively coupled plasma-mass spectrometry (ICP-MS). Internal distributions of Ca and Mg were determined in transverse leaf sections at the base and apex of leaves using energy-dispersive X-ray spectroscopy (EDS) with cryo-scanning electron microscopy (cryo-SEM). Key Results Leaf Ca and Mg concentrations were greatest in palisade and spongy mesophyll cells, respectively, although this was dependent on exogenous supply. Calcium accumulation in palisade mesophyll cells was enhanced slightly under high Mg supply; in contrast, Mg accumulation in spongy mesophyll cells was not affected by Ca supply. Conclusions The results are consistent with Arabidopsis thaliana and other Brassicaceae, providing phenotypic evidence that conserved mechanisms regulate leaf Ca and Mg distribution at a cellular scale. The future study of Arabidopsis gene orthologues in mutants of this reference B. rapa genotype will improve our understanding of Ca and Mg homeostasis in plants and may provide a model-to-crop translation pathway for targeted breeding.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background and Purpose. In rat middle cerebral arteries, endothelium-dependent hyperpolarization (EDH) is mediated by activation of calcium-activated potassium(KCa) channels specifically KCa2.3 and KCa3.1. Lipoxygenase (LOX) products function as endothelium-derived hyperpolarizing factors (EDHFs) in rabbit arteries by stimulating KCa2.3. We investigated if LOX products contribute to EDH in rat cerebral arteries. Methods. Arachidonic acid (AA) metabolites produced in middle cerebral arteries were measured using HPLC and LC/MS. Vascular tension and membrane potential responses to SLIGRL were simultaneously recorded using wire myography and intracellular microelectrodes. Results. SLIGRL, an agonist at PAR2 receptors, caused EDH that was inhibited by a combination of KCa2.3 and KCa3.1 blockade. Non-selective LOX-inhibition reduced EDH, whereas inhibition of 12-LOX had no effect. Soluble epoxide hydrolase (sEH) inhibition enhanced the KCa2.3 component of EDH. Following NO synthase (NOS) inhibition, the KCa2.3 component of EDH was absent. Using HPLC, middle cerebral arteries metabolized 14C-AA to 15- and 12-LOX products under control conditions. With NOS inhibition, there was little change in LOX metabolites, but increased F-type isoprostanes. 8-iso-PGF2α inhibited the KCa2.3 component of EDH. Conclusions. LOX metabolites mediate EDH in rat middle cerebral arteries. Inhibition of sEH increases the KCa2.3 component of EDH. Following NOS inhibition,loss of KCa2.3 function is independent of changes in LOX production or sEH inhibition but due to increased isoprostane production and subsequent stimulation of TP receptors. These findings have important implications in diseases associated with loss of NO signaling such as stroke; where inhibition of sEH and/or isoprostane formation may of benefit.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rocket species have been shown to have very high concentrations of glucosinolates and flavonols, which have numerous positive health benefits with regular consumption. In this review we highlight how breeders and processors of rocket species can utilize genomic and phytochemical research to improve varieties and enhance the nutritive benefits to consumers. Plant breeders are increasingly looking to new technologies such as HPLC, UPLC, LC-MS and GC-MS to screen populations for their phytochemical content to inform plant selections. Here we collate the research that has been conducted to-date in rocket, and summarise all glucosinolate and flavonol compounds identified in the species. We emphasize the importance of the broad screening of populations for phytochemicals and myrosinase degradation products, as well as unique traits that may be found in underutilized gene bank resources. We also stress that collaboration with industrial partners is becoming essential for long-term plant breeding goals through research.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Plants produce volatile organic compounds (VOCs) in response to herbivore attack, and these VOCs can be used by parasitoids of the herbivore as host location cues. We investigated the behavioural responses of the parasitoid Cotesia vestalis to VOCs from a plant–herbivore complex consisting of cabbage plants (Brassica oleracea) and the parasitoids host caterpillar, Plutella xylostella. A Y-tube olfactometer was used to compare the parasitoids' responses to VOCs produced as a result of different levels of attack by the caterpillar and equivalent levels of mechanical damage. Headspace VOC production by these plant treatments was examined using gas chromatography–mass spectrometry. Cotesia vestalis were able to exploit quantitative and qualitative differences in volatile emissions, from the plant–herbivore complex, produced as a result of different numbers of herbivores feeding. Cotesia vestalis showed a preference for plants with more herbivores and herbivore damage, but did not distinguish between different levels of mechanical damage. Volatile profiles of plants with different levels of herbivores/herbivore damage could also be separated by canonical discriminant analyses. Analyses revealed a number of compounds whose emission increased significantly with herbivore load, and these VOCs may be particularly good indicators of herbivore number, as the parasitoid processes cues from its external environment

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bioremediation strategies continue to be developed to mitigate the environmental impact of petroleum hydrocarbon contamination. This study investigated the ability of soil microbiota, adapted by prior exposure, to biodegrade petroleum. Soils from Barrow Is. (W. Australia), a class A nature reserve and home to Australia’s largest onshore oil field, were exposed to Barrow production oil (50 ml/kg soil) and incubated (25 °C) for successive phases of 61 and 100 days. Controls in which oil was not added at Phase I or II were concurrently studied and all treatments were amended with the same levels of additional nutrient and water to promote microbial activity. Prior exposure resulted in accelerated biodegradation of most, but not all, hydrocarbon constituents in the production oil. Molecular biodegradation parameters measured using gas chromatography–mass spectrometry (GC–MS) showed that several aromatic constituents were degraded more slowly with increased oil history. The unique structural response of the soil microbial community was reflected by the response of different phospholipid fatty acid (PLFA) sub-classes (e.g. branched saturated fatty acids of odd or even carbon number) measured using a ratio termed Barrow PLFA ratio (B-PLFAr). The corresponding values of a previously proposed hydrocarbon degrading alteration index showed a negative correlation with hydrocarbon exposure, highlighting the site specificity of PLFA-based ratios and microbial community dynamics. B-PLFAr values increased with each Phase I and II addition of production oil. The different hydrocarbon biodegradation rates and responses of PLFA subclasses to the Barrow production oil probably relate to the relative bioavailability of production oil hydrocarbons. These different effects suggest preferred structural and functional microbial responses to anticipated contaminants may potentially be engineered by controlled pre-exposure to the same or closely related substrates. The bioremediation of soils freshly contaminated with petroleum could benefit from the addition of exhaustively bioremediated soils rich in biota primed for the impacting hydrocarbons.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A general consistency in the sequential order of petroleum hydrocarbon reduction in previous biodegradation studies has led to the proposal of several molecularly based biodegradation scales. Few studies have investigated the biodegradation susceptibility of petroleum hydrocarbon products in soil media, however, and metabolic preferences can change with habitat type. A laboratory based study comprising gas chromatography–mass spectrometry (GC–MS) analysis of extracts of oil-treated soil samples incubated for up to 161 days was conducted to investigate the biodegradation of crude oil exposed to sandy soils of Barrow Island, home to both a Class ‘‘A” nature reserve and Australia’s largest on-shore oil field. Biodegradation trends of the hydrocarbon-treated soils were largely consistent with previous reports but some unusual behaviour was recognised both between and within hydrocarbon classes. For example, the n-alkanes persisted at trace levels from day 86 to 161 following the removal of typically more stable dimethyl naphthalenes and methyl phenanthrenes. The relative susceptibility to biodegradation of different di- tri- and tetramethylnaphthalene isomers also showed several features distinct from previous reports. The unique biodegradation behaviour of Barrow Is. soil likely reflects difference in microbial functioning with physiochemical variation in the environment. Correlation of molecular parameters, reduction rates of selected alkyl naphthalene isomers and CO2 respiration values with a delayed (61 d) oil-treated soil identified a slowing of biodegradation with microcosm incubation; a reduced function or population of incubated soil flora might also influence the biodegradation patterns observed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There are over 500 candidate secreted effector proteins (CSEPs) or Blumeria effector candidates (BECs) specific to the barley powdery mildew pathogen Blumeria graminis f.sp. hordei. The CSEP/BEC proteins are expressed and predicted to be secreted by biotrophic feeding structures called haustoria. Eight BECs are required for the formation of functional haustoria. These include the RNase-like effector BEC1054 (synonym CSEP0064). In order to identify host proteins targeted by BEC1054, recombinant BEC1054 was expressed in E. coli, solubilized, and used in pull-down assays from barley protein extracts. Many putative interactors were identified by LC-MS/MS after subtraction of unspecific binders in negative controls. Therefore, a directed yeast-2-hybrid assay, developed to measure the effectiveness of the interactions in yeast, was used to validate putative interactors. We conclude that BEC1054 may target several host proteins, including a glutathione-S-transferase, a malate dehydrogenase, and a pathogen-related-5 protein isoform, indicating a possible role for BEC1054 in compromising well-known key players of defense and response to pathogens. In addition, BEC1054 interacts with an elongation factor 1 gamma. This study already suggests that BEC1054 plays a central role in barley powdery mildew virulence by acting at several levels.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present study aims to investigate the dose dependent effects of consuming diets enriched in flavonoid-rich and flavonoid-poor fruits and vegetables on the urine metabolome of adults who had a C1.5 fold increased risk of cardiovascular diseases. A single-blind, dose-dependent, parallel randomized controlled dietary intervention was conducted where volunteers (n = 126) were randomly assigned to one of three diets: high flavonoid diet, low flavonoid diet or habitual diet as a control for 18 weeks. High resolution LC– MS untargeted metabolomics with minimal sample cleanup was performed using an Orbitrap mass spectrometer. Putative biomarkers which characterize diets with high and low flavonoid content were selected by state-of-the-art data analysis strategies and identified by HR-MS and HR-MS/MS assays. Discrimination between diets was observed by application of two linear mixedmodels: one including a diet-time interaction effect and the second containing only a time effect. Valerolactones, phenolic acids and their derivatives were among sixteen biomarkers related to the high flavonoid dietary exposure. Four biomarkers related to the low flavonoid diet belonged to the family of phenolic acids. For the first time abscisic acid glucuronide was reported as a biomarker after a dietary intake, however its origins have to be examined by future hypothesis driven experiments using a more targeted approach. This metabolomic analysis has identified a number of dose dependent urinary biomarkers (i.e. proline betaine or iberin-N-acetyl cysteine), which can be used in future observation and intervention studies to assess flavonoids and nonflavonoid phenolic intakes and compliance to fruit and vegetable intervention.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The exhaust emission of the polycyclic aromatic hydrocarbons (PAHs) considered toxic to human health were investigated on two spark ignition light duty vehicles, one being gasohol (Gasohol, in Brazil, is the generic denomination for mixtures of pure gasoline plus 20-25% of anhydrous ethyl alcohol fuel (AEAF).)-fuelled and the other a flexible-fuel vehicle fuelled with hydrated ethanol. The influence of fuel type and quality, aged lubricant oil type and use of fuel additives on the formation of these compounds was tested using standardized tests identical to US FTP-75 cycle. PAH sampling and chemical analysis followed the basic recommendations of method TO-13 (United States. Environmental Protection Agency, 1999. Compendium Method TO-13A - Determination of polycyclic Aromatic hydrocarbons (PAH) in Ambient Air Using Gas Chromatography/Mass Spectrometry (CG/MS). Center for environmental research information, Cincinnati, p. 78), with the necessary modification for this particular application. Results showed that the total PAH emission factor varied from 41.9 mu g km(-1) to 612 mu g km(-1) in the gasohol vehicle, and from 11.7 mu g km(-1) to 27.4 mu g km(-1) in the ethanol-fuelled vehicle, a significant difference in favor of the ethanol vehicle. Generally, emission of light molecular weight PAHs was predominant, while high molecular weights PAHs were not detected. In terms of benzo(a)pyrene toxicity equivalence, emission factors varied from 0.00984 mu g TEQ km(-1) to 4.61 mu g TEQ km(-1) for the gasohol vehicle and from 0.0117 mu g TEQ km(-1) to 0.0218 mu g TEQ km(-1) in the ethanol vehicle. For the gasohol vehicle, results showed that the use of fuel additive causes a significant increase in the emission of naphthalene and phenanthrene at a confidence level of 90% or higher; the use of rubber solvent on gasohol showed a reduction in the emission of naphthalene and phenanthrene at the same confidence level; the use of synthetic oil instead of mineral oil also contributed significantly to a decrease in the emission of naphthalene and fluorene. In relation to the ethanol vehicle, the same factors were tested and showed no statistically significant influence on PAH emission. (c) 2008 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Supercritical carbon dioxide (SC-CO(2)) extractions of Brazilian cherry (Eugenia uniflora L.) were carried out under varied conditions of pressure and temperature, according to a central composite 2(2) experimental design, in order to produce flavour-rich extracts. The composition of the extracts was evaluated by gas chromatography coupled with mass spectrometry (GC/MS). The abundance of the extracted compounds was then related to sensory analysis results, assisted by principal component and factorial discriminant analysis (PCA and FDA, respectively). The identified sesquiterpenes and ketones were found to strongly contribute to the characteristic flavour of the Brazilian cherry. The extracts also contained a variety of other volatile compounds, and part of the fruit wax contained long-chain hydrocarbons that according to multivariate analysis, contributed to the yield of the extracts, but not the flavour. Volatile phenolic compounds, to which antioxidant properties are attributed, were also present in the extracts in high proportion, regardless of the extraction conditions. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The leaves of the Pitanga bush (Eugenia uniflora L.) are considered to be effective against many diseases. Extracts from Pitanga leaves have been found to show pronounced anti-inflammatory action and to have antimicrobial and antifungal activities, among other properties. In this work, extracts from Pitanga leaves were obtained by hydrodistillation and by extraction with supercritical carbon dioxide (SC-CO(2)) at three conditions of temperature and pressure. In the SC-CO(2) extractions also were collected the components that are lost with the CO(2) in the exit of the system using Porapak-Q polymer trap. All extracts were analyzed by gas chromatography-mass spectrometry (GC-MS). Thirty-nine compounds were found in the extracts and twenty-six were identified. The main components identified in the extracts in decreasing quantitative order were: curzerene, germacrene B, C(15)H(20)O(2) and beta-elemene for hydrodistillation; C(15)H(20)O(2) and curzerene for SC-CO(2) extracts and 3-hexen-1-ol, curzerene, C(15)H(20)O(2), beta-elemene and germacrene B for SC-CO(2) extracts captured in Porapak-Q. PRACTICAL APPLICATIONS The natural extracts are a potential source of compounds possessing biological activities. They can be used in foods, pharmaceutics and cosmetics. Pitanga is an exotic fruit from Brazil and extracts from its leaves have been used against many diseases in Brazilian folk medicine. Supercritical extraction is an interesting process for the production of natural extracts because it is a clean process and the knowledge of composition of extracts is crucial for the identification of the probable active components.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Malvales is an order of flowering plants with a controversial circumscription. The relationships between taxa, particularly Malvaceae, Bombacaceae, Sterculiaceae, and Tiliaceae, are not well delineated. Several studies have reported the fatty acid compositions of Malvaceae plants but not for taxonomic purposes. In the present study, the fatty acid composition of oilseeds from seven species belonging to the Malvaceae family was determined by capillary gas chromatography/mass spectrometry (GC/MS), and the quantitative distribution of fatty acids was analyzed by a cluster analysis With Euclidean Distance and UPGMA. The oil content in the seeds was very low (8.3-11.8%). The profile of fatty acids showed that there were two distinct groups: species rich in palmitic acid (Herissantia tiubae, Sidastrum paniculatum and Sida rhombifolia) and species rich in linoleic acid (other Sida species). The fatty acid profiles found for Sida species are consistent with other reported data. Although our data support a distinction between Sida and Sidastrum, more species should be analyzed to evaluate the real taxonomic value of differences in fatty acid content for distinguishing Malvaceae. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cosmomycin D (CosD) is an anthracycline that has two trisaccharide chains linked to its ring system. Gel electrophoresis showed that CosD formed stable complexes with plasmid DNA under conditions where daunorubicin (Dn) and doxorubicin (Dx) dissociated to some extent during the experiments. The footprint and stability of CosD complexed with 10- and 16 trier DNA was investigated using several applications of electrospray ionisation mass spectrometry (ESI-MS). ESI-MS binding profiles showed that fewer CosD molecules bound to the sequences than Dn or Dx. In agreement with this, ESI-MS analysis of nuclease digestion products of the complexes showed that CosD protected the DNA to a greater extent than Dn or Dx. In tandem MS experiments, all CosD-DNA complexes were more stable than Dn- and Dx-DNA complexes. These results Support that CosD binds more tightly to DNA and exerts a larger footprint than ESI-MS investigations of the binding properties of CosD Could be carried out rapidly and using only small amounts of sample. (C) 2008 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, the biodegradation mechanism of phenol and sub products (such as catechol and hydroquinone) in Chromobacterium violaceum was investigated by cloning and molecular characterization of a phenol monooxygenase gene in Escherichia coli. This gene (Cvmp) is very similar (74 and 59% of similarity and identity, respectively) to the ortholog from Ralstonia eutropha, bacteria capable of utilizing phenol as the sole carbon source. The phenol biodegradation ability of E. coli recombinant strains was tested by cell-growth in a minimal medium containing phenol as the sole source of carbon and release of intermediary metabolites (catechol and hydroquinone). Interestingly, during the growth of these strains on phenol, catechol, and hydroquinone accumulated transiently in the medium. These metabolites were further analyzed by HPLC. These results indicated that phenol can be initially orto or para hydroxylated to produce cathecol or hydroquinone, respectively, followed by meta-cleavage of aromatic rings. To verify this information, the metabolites obtained from HPLC were submitted to LC/MS to confirm their chemical structure, thereby indicating that the recombinant strains utilize two different routes simultaneously, leading to different ring-fission substrates for the metabolism of phenol. (C) KSBB

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Arthropods display different mechanisms to protect themselves against infections, among which antimicrobial peptides (AMPs) play an important role, acting directly against invader pathogens. We have detected several factors with inhibitory activity against Candida albicans and Micrococcus luteus on the surface and in homogenate of eggs of the tick Rhipicephalus (Boophilus) microplus. One of the anti-M. luteus factors of the egg homogenate was isolated to homogeneity. Analysis by electrospray mass spectrometry (ESI-MS) revealed that it corresponds to microplusin, an AMP previously isolated from the cell-free hemolymph of X (B.) microplus. Reverse transcription (RT) quantitative polymerase chain reactions (qPCR) showed that the levels of microplusin mRNA gradually increase along ovary development, reaching an impressive highest value three days after the adult females have dropped from the calf and start oviposition. Interestingly, the level of microplusin mRNA is very low in recently laid eggs. An enhance of microplusin gene expression in eggs is observed only nine days after the onset of oviposition, achieving the highest level just before the larva hatching, when the level of expression decreases once again. Fluorescence microscopy analysis using an anti-microplusin serum revealed that microplusin is present among yolk granules of oocytes as well as in the connecting tube of ovaries. These results, together to our previous data. suggest that microplusin may be involved not only in protection of adult female hemocele, but also in protection of the female reproductive tract and embryos, what points this AMP as a considerable target for development of new methods to control R. (B.) microplus as well as the vector-borne pathogens. (c) 2009 Elsevier Ltd. All rights reserved.