920 resultados para light response curve
Resumo:
Filtration membrane technology has already been employed to remove various organic effluents produced from the textile, paper, plastic, leather, food and mineral processing industries. To improve membrane efficiency and alleviate membrane fouling, an integrated approach is adopted that combines membrane filtration and photocatalysis technology. In this study, alumina nanofiber (AF) membranes with pore size of about 10 nm (determined by the liquid-liquid displacement method) have been synthesized through an in situ hydrothermal reaction, which permitted a large flux and achieved high selectivity. Silver nanoparticles (Ag NPs) are subsequently doped on the nanofibers of the membranes. Silver nanoparticles can strongly absorb visible light due to the surface plasmon resonance (SPR) effect, and thus induce photocatalytic degradation of organic dyes, including anionic, cationic and neutral dyes, under visible light irradiation. In this integrated system, the dyes are retained on the membrane surface, their concentration in the vicinity of the Ag NPs are high and thus can be efficiently decomposed. Meanwhile, the usual flux deterioration caused by the accumulation of the filtered dyes in the passage pores can be avoided. For example, when an aqueous solution containing methylene blue is processed using an integrated membrane, a large flux of 200 L m-2 h-1 and a stable permeating selectivity of 85% were achieved. The combined photocatalysis and filtration function leads to superior performance of the integrated membranes, which have a potential to be used for the removal of organic pollutants in drinking water.
Resumo:
Purpose: We investigated the interaction between adapting field size and luminance on pupil diameter when cones alone (photopic) or rods and cones (mesopic) were active. Method: Circular achromatic targets (1o to 24o diameter) were presented to eight young participants on a rectangular projector screen. The accommodative influence on pupil diameter was minimized using cycloplegia in the fixing right eye and the consensual pupil reflex was measured in the left eye. Target luminance was adjusted for each stimulus such that corneal flux density (product of field area and luminance) was constant at 3600 cd.deg2m-2 (photopic condition) and 1.49 cd.deg2m-2 (mesopic condition). Results: There were no statistically significant effects of adaptive field size on pupil diameter for either condition. Conclusion: If corneal flux density is kept constant, there will be no change in pupil diameter as the size of the stimulus field increases at either mesopic or photopic lighting levels up to at least 24°.
Resumo:
Background Although physical activity is associated with health-related quality of life (HRQL), the nature of the dose-response relationship remains unclear. This study examined the concurrent and prospective dose-response relationships between total physical activity (TPA) and (only) walking with HRQL in two age cohorts of women. Methods Participants were 10,698 women born in 1946-1951 and 7,646 born in 1921-1926, who completed three mailed surveys for the Australian Longitudinal Study on Women's Health. They reported weekly TPA minutes (sum of walking, moderate, and vigorous minutes). HRQL was measured with the Medical Outcomes Study Short-Form 36 Health Status Survey (SF-36). Linear mixed models, adjusted for socio-demographic and health-related variables, were used to examine associations between TPA level (none, very low, low, intermediate, sufficient, high, and very high) and SF-36 scores. For women who reported walking as their only physical activity, associations between walking and SF-36 scores were also examined. Results Curvilinear trends were observed between TPA and walking with SF-36 scores. Concurrently, HRQL scores increased significantly with increasing TPA and walking, in both cohorts, with increases less marked above sufficient activity levels. Prospectively, associations were attenuated although significant and meaningful improvements in physical functioning and vitality were observed across most TPA and walking categories above the low category. Conclusion For women in their 50s-80s without clinical depression, greater amounts of TPA are associated with better current and future HRQL, particularly physical functioning and vitality. Even if walking is their only activity, women, particularly those in their 70s-80s, have better health-related quality of life.
Resumo:
Reflecting on the legal consequences of globalisation in the 21st century, Twining predicted that societies in the West would have to 'wrestle with the extent to which the state should recognise, make concessions to, or even enforce norms and values embedded in different religions, cultures or traditions'. This is borne out as the direction across the common law world moves towards entrenching legal pluralism. The concessions each nation has made to minorities with different religions, cultures and traditions have varied. The special character of Islam, as a comprehensive blueprint for life in which law and religion unite, has meant that the negotiations for a special place for Muslims within each common law jurisdiction has been at the forefront of new legal ordering possibilities. This is the crux of the pluralism debate. Cautiously, Australians have watched the, at times histrionic, discourse in Canada and Great Britain on official recognition for Islamic law.
Resumo:
Abstract Background: Helicobacter pylori (H. pylori) infection is ubiquitous in sub-Saharan Africa, but paradoxically gastric cancer is rare. Methods: Sera collected during a household-based survey in rural Tanzania in 1985 were tested for anti-H. pylori IgG and IgG subclass antibodies by enzyme immunoassay. Odds ratios (OR) and confidence intervals (CI) of association of seropositivity with demographic variables were computed by logistic regression models. Results: Of 788 participants, 513 were aged ≤17 years. H. pylori seropositivity increased from 76% at 0–4 years to 99% by ≥18 years of age. Seropositivity was associated with age (OR 11.5, 95% CI 4.2–31.4 for 10–17 vs. 0–4 years), higher birth-order (11.1; 3.6–34.1 for ≥3rd vs. 1st born), and having a seropositive next-older sibling (2.7; 0.9–8.3). Median values of IgG subclass were 7.2 for IgG1 and 2.0 for IgG2. The median IgG1/IgG2 ratio was 3.1 (IQR: 1.7–5.6), consistent with a Th2- dominant immune profile. Th2-dominant response was more frequent in children than adults (OR 2.4, 95% CI 1.3–4.4). Conclusion: H. pylori seropositivity was highly prevalent in Tanzania and the immunological response was Th2-dominant. Th2-dominant immune response, possibly caused by concurrent bacterial or parasitic infections, could explain, in part, the lower risk of H. pylori-associated gastric cancer in Africa.
Resumo:
In recent times, light gauge steel framed (LSF) structures, such as cold-formed steel wall systems, are increasingly used, but without a full understanding of their fire performance. Traditionally the fire resistance rating of these load-bearing LSF wall systems is based on approximate prescriptive methods developed based on limited fire tests. Very often they are limited to standard wall configurations used by the industry. Increased fire rating is provided simply by adding more plasterboards to these walls. This is not an acceptable situation as it not only inhibits innovation and structural and cost efficiencies but also casts doubt over the fire safety of these wall systems. Hence a detailed fire research study into the performance of LSF wall systems was undertaken using full scale fire tests and extensive numerical studies. A new composite wall panel developed at QUT was also considered in this study, where the insulation was used externally between the plasterboards on both sides of the steel wall frame instead of locating it in the cavity. Three full scale fire tests of LSF wall systems built using the new composite panel system were undertaken at a higher load ratio using a gas furnace designed to deliver heat in accordance with the standard time temperature curve in AS 1530.4 (SA, 2005). Fire tests included the measurements of load-deformation characteristics of LSF walls until failure as well as associated time-temperature measurements across the thickness and along the length of all the specimens. Tests of LSF walls under axial compression load have shown the improvement to their fire performance and fire resistance rating when the new composite panel was used. Hence this research recommends the use of the new composite panel system for cold-formed LSF walls. The numerical study was undertaken using a finite element program ABAQUS. The finite element analyses were conducted under both steady state and transient state conditions using the measured hot and cold flange temperature distributions from the fire tests. The elevated temperature reduction factors for mechanical properties were based on the equations proposed by Dolamune Kankanamge and Mahendran (2011). These finite element models were first validated by comparing their results with experimental test results from this study and Kolarkar (2010). The developed finite element models were able to predict the failure times within 5 minutes. The validated model was then used in a detailed numerical study into the strength of cold-formed thin-walled steel channels used in both the conventional and the new composite panel systems to increase the understanding of their behaviour under nonuniform elevated temperature conditions and to develop fire design rules. The measured time-temperature distributions obtained from the fire tests were used. Since the fire tests showed that the plasterboards provided sufficient lateral restraint until the failure of LSF wall panels, this assumption was also used in the analyses and was further validated by comparison with experimental results. Hence in this study of LSF wall studs, only the flexural buckling about the major axis and local buckling were considered. A new fire design method was proposed using AS/NZS 4600 (SA, 2005), NAS (AISI, 2007) and Eurocode 3 Part 1.3 (ECS, 2006). The importance of considering thermal bowing, magnified thermal bowing and neutral axis shift in the fire design was also investigated. A spread sheet based design tool was developed based on the above design codes to predict the failure load ratio versus time and temperature for varying LSF wall configurations including insulations. Idealised time-temperature profiles were developed based on the measured temperature values of the studs. This was used in a detailed numerical study to fully understand the structural behaviour of LSF wall panels. Appropriate equations were proposed to find the critical temperatures for different composite panels, varying in steel thickness, steel grade and screw spacing for any load ratio. Hence useful and simple design rules were proposed based on the current cold-formed steel structures and fire design standards, and their accuracy and advantages were discussed. The results were also used to validate the fire design rules developed based on AS/NZS 4600 (SA, 2005) and Eurocode Part 1.3 (ECS, 2006). This demonstrated the significant improvements to the design method when compared to the currently used prescriptive design methods for LSF wall systems under fire conditions. In summary, this research has developed comprehensive experimental and numerical thermal and structural performance data for both the conventional and the proposed new load bearing LSF wall systems under standard fire conditions. Finite element models were developed to predict the failure times of LSF walls accurately. Idealized hot flange temperature profiles were developed for non-insulated, cavity and externally insulated load bearing wall systems. Suitable fire design rules and spread sheet based design tools were developed based on the existing standards to predict the ultimate failure load, failure times and failure temperatures of LSF wall studs. Simplified equations were proposed to find the critical temperatures for varying wall panel configurations and load ratios. The results from this research are useful to both structural and fire engineers and researchers. Most importantly, this research has significantly improved the knowledge and understanding of cold-formed LSF loadbearing walls under standard fire conditions.
Resumo:
Driver response (reaction) time (tr) of the second queuing vehicle is generally longer than other vehicles at signalized intersections. Though this phenomenon was revealed in 1972, the above factor is still ignored in conventional departure models. This paper highlights the need for quantitative measurements and analysis of queuing vehicle performance in spontaneous discharge pattern because it can improve microsimulation. Video recording from major cities in Australia plus twenty two sets of vehicle trajectories extracted from the Next Generation Simulation (NGSIM) Peachtree Street Dataset have been analyzed to better understand queuing vehicle performance in the discharge process. Findings from this research will alleviate driver response time and also can be used for the calibration of the microscopic traffic simulation model.
Resumo:
Spatially offset Raman spectroscopy (SORS) is demonstrated for the non-contact detection of energetic materials concealed within non-transparent, diffusely scattering containers. A modified design of an inverse SORS probe has been developed and tested. The SORS probe has been successfully used for the detection of various energetic substances inside different types of plastic containers. The tests have been successfully conducted under incandescent and fluorescent background lights as well as under daylight conditions, using a non-contact working distance of 6 cm. The interrogation times for the detection of the substances were less than 1 minute in each case, highlighting the suitability of the device for near real-time detection of concealed hazards in the field. The device has potential applications in forensic analysis and homeland security investigations.
Resumo:
In an age of mobile phones, Facebook, Twitter and online dating, interactions in mediated environments often outnumber face to face encounters. Kiss is an interactive light artwork by artists Priscilla Bracks & Gavin Sade. Kiss reacts to people standing in front of the artwork looking at each other - the moment before kissing. Without interaction the work generates a seductive, ambient, red lighting display, that creates the restful sense of staring into a fire. A fleeting response of white light – like sparks flying in the air – occurs the moment before two faces touch. These sparks are visible in peripheral vision, but fade when the kissing couple turns to look at the work. This moment - as two people look at each other - is a primal moment when two people recognise each other. Face to face encounters with another person are a privileged phenomenon in which the other person's presence and proximity are strongly felt. Kiss does not respond to every instance of a kiss or a look. Its recognition algorithms are fussy, selecting some faces and not others. As in life it’s difficult to tell why sparks fly with some people but not with others. For some this will be felt as a glitch. “This machine should be part of my social life!” But it does promote trial and error, asking viewers to be intimate in public and look at each other for longer than otherwise socially normal. 10 minutes continuous eye contact is said in most cases to arouse sexual feelings in both parties. But even if we don’t look that long, a short time may be all that is needed to explore the face of the person we are looking at. We see that they are human like us. We experience beauty, difference, discomfort, perhaps even nervous laughing, before turning to a more intimate moment of recognition.
Resumo:
Surface coating with an organic self-assembled monolayer (SAM) can enhance surface reactions or the absorption of specific gases and hence improve the response of a metal oxide (MOx) sensor toward particular target gases in the environment. In this study the effect of an adsorbed organic layer on the dynamic response of zinc oxide nanowire gas sensors was investigated. The effect of ZnO surface functionalisation by two different organic molecules, tris(hydroxymethyl)aminomethane (THMA) and dodecanethiol (DT), was studied. The response towards ammonia, nitrous oxide and nitrogen dioxide was investigated for three sensor configurations, namely pure ZnO nanowires, organic-coated ZnO nanowires and ZnO nanowires covered with a sparse layer of organic-coated ZnO nanoparticles. Exposure of the nanowire sensors to the oxidising gas NO2 produced a significant and reproducible response. ZnO and THMA-coated ZnO nanowire sensors both readily detected NO2 down to a concentration in the very low ppm range. Notably, the THMA-coated nanowires consistently displayed a small, enhanced response to NO2 compared to uncoated ZnO nanowire sensors. At the lower concentration levels tested, ZnO nanowire sensors that were coated with THMA-capped ZnO nanoparticles were found to exhibit the greatest enhanced response. ΔR/R was two times greater than that for the as-prepared ZnO nanowire sensors. It is proposed that the ΔR/R enhancement in this case originates from the changes induced in the depletion-layer width of the ZnO nanoparticles that bridge ZnO nanowires resulting from THMA ligand binding to the surface of the particle coating. The heightened response and selectivity to the NO2 target are positive results arising from the coating of these ZnO nanowire sensors with organic-SAM-functionalised ZnO nanoparticles.
Resumo:
With new photocatalysts of gold nanoparticles supported on zeolite supports (Au/zeolite), oxidation of benzyl alcohol and its derivatives into the corresponding aldehydes can proceed well with a high selectivity (99%) under visible light irradiation at ambient temperature. Au/zeolite photocatalysts were characterized by UV/Vis, XPS, TEM, XRD, EDS, BET, IR, and Raman techniques. The Surface Plasmon Resonance (SPR) effect of gold nanoparticles, the adsorption capability of zeolite supports, and the molecular polarities of aromatic alcohols were demonstrated to have an essential correlation with the photocatalytic performances. In addition, the effects of light intensity, wavelength range, and the role of molecular oxygen were investigated in detail. The kinetic study indicated that the visible light irradiation required much less apparent activation energy for photooxidation compared with thermal reaction. Based on the characterization data and the photocatalytic performances, we proposed a possible photooxidation mechanism.
Resumo:
The recognition of carbohydrate moieties by cells of the innate immune system is emerging as an essential element in antifungal immunity, but despite the number and diversity of lectins expressed by innate immune cells, few carbohydrate receptors have been characterized. Mincle, a C-type lectin, is expressed predominantly on macrophages, and is here shown to play a role in macrophage responses to the yeast Candida albicans. After exposure to the yeast in vitro, Mincle localized to the phagocytic cup, but it was not essential for phagocytosis. In the absence of Mincle, production of TNF-_ by macrophages was reduced, both in vivo and in vitro. In addition, mice lacking Mincle showed a significantly increased susceptibility to systemic candidiasis. Thus, Mincle plays a novel and nonredundant role in the induction of inflammatory signaling in response to C. albicans infection.
Resumo:
A case study relating to secondary education, examining the teacher student relationship as it operates within the English classroom is the topic of this paper. It describes how a certain conception of 'personal response' to literature provided a means for the teacher/counsellor to form the ethical capacities of children. 'Personal response' is usually associated with the moment in which the child is freed to be most natural. But for all the emphasis upon the irreducibly individual nature of the 'genuinely felt response', this pedagogic exercise finds its place within a series of strategies designed both to cherish and correct the child, to nurture and to scrutinise, to guide and to reconstruct.
Resumo:
Mandatory data breach notification laws have been a significant legislative reform in response to unauthorized disclosures of personal information by public and private sector organizations. These laws originated in the state-based legislatures of the United States during the last decade and have subsequently garnered worldwide legislative interest. We contend that there are conceptual and practical concerns regarding mandatory data breach notification laws which limit the scope of their applicability, particularly in relation to existing information privacy law regimes. We outline these concerns here, in the light of recent European Union and Australian legal developments in this area.
Genotype x culture media interaction effects on regeneration response of three indica rice cultivars
Resumo:
Interactive effects of genotypes with callus induction and regeneration media combinations on green plantlet regeneration response were studied for three indica rice (Oryza sativa L.) cultivars, IR-72, IR-54 and Karnal Local. Isolated mature-embryoswere used to derive scutellar callus and fifteen media combinations involvingMS, N6, R2, SK1 and some modifications were tested. Regeneration percentage as well as the shoot-bud induction frequency were influenced by genotype, callus induction medium, regeneration medium, interaction between genotype and the two media (callus induction and regeneration) as well the interaction between the callus induction medium and regeneration medium. Basal media combination of SK1m (callusing) and MS (regeneration) was found to be the best for cv. Karnal Local in which regeneration frequency of 88% and shoot-bud induction of 233% was observed. In IR-72, the highest regeneration frequency of 47.5% and shoot-bud induction frequency of 77% was obtained on MS-MS combination. In IR-54, highest regeneration frequency (25%) was recorded on MMS(N)-MMS(N) combination, whereas, highest frequency of shoot-bud induction (50%) was observed on MMS(S)-MS combination. Although genotype and the composition of the callus induction basal medium were the major determinants of regeneration response, an overall analysis of variation also revealed a significant interaction between the media used for de-differentiation (callusing) and re-differentiation (plantlet regeneration)