1000 resultados para levator scapulae muscle


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Energy conservation directed at accelerating body fat recovery (or catch-up fat) contributes to obesity relapse after slimming and to excess fat gain during catch-up growth after malnutrition. To investigate the mechanisms underlying such thrifty metabolism for catch-up fat, we tested whether during refeeding after caloric restriction rats exhibiting catch-up fat driven by suppressed thermogenesis have diminished skeletal muscle phosphatidylinositol-3-kinase (PI3K) activity or AMP-activated protein kinase (AMPK) signaling—two pathways required for hormone-induced thermogenesis in ex vivo muscle preparations. The results show that during isocaloric refeeding with a low-fat diet, at time points when body fat, circulating free fatty acids, and intramyocellular lipids in refed animals do not exceed those of controls, muscle insulin receptor substrate 1-associated PI3K activity (basal and in vivo insulin-stimulated) is lower than that in controls. Isocaloric refeeding with a high-fat diet, which exacerbates the suppression of thermogenesis, results in further reductions in muscle PI3K activity and in impaired AMPK phosphorylation (basal and in vivo leptin-stimulated). It is proposed that reduced skeletal muscle PI3K/AMPK signaling and suppressed thermogenesis are interdependent. Defective PI3K or AMPK signaling will reduce the rate of substrate cycling between de novo lipogenesis and lipid oxidation, leading to suppressed thermogenesis, which accelerates body fat recovery and furthermore sensitizes skeletal muscle to dietary fat-induced impairments in PI3K/AMPK signaling.—Summermatter, S., Mainieri, D., Russell, A. P., Seydoux, J., Montani, J. P., Buchala, A., Solinas, G., Dulloo, A. G. Thrifty metabolism that favors fat storage after caloric restriction: a role for skeletal muscle phosphatidylinositol-3-kinase activity and AMP-activated protein kinase.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Brown adipose tissue uncoupling protein-1 (UCP1) plays a major role in the control of energy balance in rodents. It has long been thought, however, that there is no physiologically relevant UCP1 expression in adult humans. In this study we show, using an original approach consisting of sorting cells from various tissues and differentiating them in an adipogenic medium, that a stationary population of skeletal muscle cells expressing the CD34 surface protein can differentiate in vitro into genuine brown adipocytes with a high level of UCP1 expression and uncoupled respiration. These cells can be expanded in culture, and their UCP1 mRNA expression is strongly increased by cell-permeating cAMP derivatives and a peroxisome-proliferator-activated receptor-{gamma} (PPAR{gamma}) agonist. Furthermore, UCP1 mRNA was detected in the skeletal muscle of adult humans, and its expression was increased in vivo by PPAR{gamma} agonist treatment. All the studies concerning UCP1 expression in adult humans have until now been focused on the white adipose tissue. Here we show for the first time the existence in human skeletal muscle and the prospective isolation of progenitor cells with a high potential for UCP1 expression. The discovery of this reservoir generates a new hope of treating obesity by acting on energy dissipation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Proinflammatory cytokines, such as tumor necrosis factor (TNF)-{alpha}, contribute to muscle wasting in inflammatory disorders, where TNF{alpha} acts to regulate myogenic genes. Conjugated linoleic acid (CLA) has shown promise as an antiproliferative and antiinflammatory agent, leading to its potential as a therapeutic agent in muscle-wasting disorders. To evaluate the effect of CLA on myogenesis during inflammation, human primary muscle cells were grown in culture and exposed to varying concentrations of TNF{alpha} and the cis-9, trans-11 and trans-10, cis-12 CLA isomers. Expression of myogenic genes (Myf5, MyoD, myogenin, and myostatin) and the functional genes creatine kinase (CK) and myosin heavy chain (MHC IIx) were measured by real-time PCR. TNF{alpha} significantly downregulated MyoD and myogenin expression, whereas it increased Myf5 expression. These changes corresponded with a decrease in both CK and MHC IIx expression. Both isomers of CLA mimicked the inhibitory effect of TNF{alpha} treatment on MyoD and myogenin expression, whereas myostatin expression was diminished in the presence of both isomers of CLA either alone or in combination with TNF{alpha}. Both isomers of CLA decreased CK and MHC IIx expression. These findings demonstrate that TNF{alpha} can have specific regulatory effects on myogenic genes in primary human muscle cells. A postulated antiinflammatory role of CLA in myogenesis appears more complex, with an indication that CLA may have a negative effect on this process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Creatine monohydrate (CrM) supplementation has been shown to increase fat-free mass and muscle power output possibly via cell swelling. Little is known about the cellular response to CrM. We investigated the effect of short-term CrM supplementation on global and targeted mRNA expression and protein content in human skeletal muscle. In a randomized, placebo-controlled, crossover, double-blind design, 12 young, healthy, nonobese men were supplemented with either a placebo (PL) or CrM (loading phase, 20 g/day x 3 days; maintenance phase, 5 g/day x 7 days) for 10 days. Following a 28-day washout period, subjects were put on the alternate supplementation for 10 days. Muscle biopsies of the vastus lateralis were obtained and were assessed for mRNA expression (cDNA microarrays + real-time PCR) and protein content (Kinetworks KPKS 1.0 Protein Kinase screen). CrM supplementation significantly increased fat-free mass, total body water, and body weight of the participants (P < 0.05). Also, CrM supplementation significantly upregulated (1.3- to 5.0-fold) the mRNA content of genes and protein content of kinases involved in osmosensing and signal transduction, cytoskeleton remodeling, protein and glycogen synthesis regulation, satellite cell proliferation and differentiation, DNA replication and repair, RNA transcription control, and cell survival. We are the first to report this large-scale gene expression in the skeletal muscle with short-term CrM supplementation, a response that suggests changes in cellular osmolarity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Chronic painful insertional Achilles tendinopathy is seen in both physically active and non-active individuals. Painful eccentric training, where the patients load the Achilles tendon into full dorsiflexion, has shown good results in patients with mid-portion Achilles tendinosis. However, only 32% of patients with insertional Achilles tendinopathy had good clinical results with that type of eccentric training regimen.

Aim: To investigate whether a new model of painful eccentric training had an effect on chronic painful insertional Achilles tendinopathy.

Patients and methods: 27 patients (12 men, 15 women, mean age 53 years) with a total of 34 painful Achilles tendons with a long duration of pain (mean 26 months), diagnosed as insertional Achilles tendinopathy, were included. The patients performed a new model of painful eccentric training regimen without loading into dorsiflexion. This was done as 3x15 reps, twice a day, 7 days/week, for 12 weeks. Pain during Achilles-tendon-loading activity (VAS) and patient’s satisfaction (back to previous activity) were evaluated.

Results:
At follow-up (mean 4 months) 18 patients (67%, 23/34 tendons) were satisfied and back to their previous tendon-loading activity. Their mean VAS had decreased from 69.9 (SD 18.9) to 21 (SD 20.6) (p<0.001). Nine patients (11 tendons) were not satisfied with the treatment, although their VAS was significantly reduced from 77.5 (8.6) to 58.1 (14.8) (p<0.01).

Conclusion:
In this short-term pilot study this new model of painful eccentric calf-muscle training showed promising clinical results in 67% of the patients.