950 resultados para ion-exchange chromatography fractionation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The demand for novel renewable energy sources, together with the new findings on bacterial electron transport mechanisms and the progress in microbial fuel cell design, have raised a noticeable interest in microbial power generation. Microbial fuel cell (MFC) is an electrochemical device that converts organic substrates into electricity via catalytic conversion by microorganism. It has represented a continuously growing research field during the past few years. The great advantage of this device is the direct conversion of the substrate into electricity and in the future, MFC may be linked to municipal waste streams or sources of agricultural and animal waste, providing a sustainable system for waste treatment and energy production. However, these novel green technologies have not yet been used for practical applications due to their low power outputs and challenges associated with scale-up, so in-depth studies are highly necessary to significantly improve and optimize the device working conditions. For the time being, the micro-scale MFCs show great potential in the rapid screening of electrochemically active microbes. This thesis presents how it will be possible to optimize the properties and design of the micro-size microbial fuel cell for maximum efficiency by understanding the MFC system. So it will involve designing, building and testing a miniature microbial fuel cell using a new species of microorganisms that promises high efficiency and long lifetime. The new device offer unique advantages of fast start-up, high sensitivity and superior microfluidic control over the measured microenvironment, which makes them good candidates for rapid screening of electrode materials, bacterial strains and growth media. It will be made in the Centre of Hybrid Biodevices (Faculty of Physical Sciences and Engineering, University of Southampton) from polymer materials like PDMS. The eventual aim is to develop a system with the optimum combination of microorganism, ion exchange membrane and growth medium. After fabricating the cell, different bacteria and plankton species will be grown in the device and the microbial fuel cell characterized for open circuit voltage and power. It will also use photo-sensitive organisms and characterize the power produced by the device in response to optical illumination.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Performing experiments with transactinide elements demands highly sensitive detection methods due to the extremely low production rates (one-atom-at-a-time conditions). Preseparation with a physical recoil separator is a powerful method to significantly reduce the background in experiments with sufficiently long-lived isotopes (t1/2≥0.5 s). In the last years, the new gas-filled TransActinide Separator and Chemistry Apparatus (TASCA) was installed and successfully commissioned at GSI. Here, we report on the design and performance of a Recoil Transfer Chamber (RTC) for TASCA—an interface to connect various chemistry and counting setups with the separator. Nuclear reaction products recoiling out of the target are separated according to their magnetic rigidity within TASCA, and the wanted products are guided to the focal plane of TASCA. In the focal plane, they pass a thin Mylar window that separates the ∼1 mbar atmosphere in TASCA from the RTC kept at ∼1 bar. The ions are stopped in the RTC and transported by a continuous gas flow from the RTC to the ancillary setup. In this paper, we report on measurements of the transportation yields under various conditions and on the first chemistry experiments at TASCA—an electrochemistry experiment with osmium and an ion exchange experiment with the transactinide element rutherfordium.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The low-energy β− emitter 161Tb is very similar to 177Lu with respect to half-life, beta energy and chemical properties. However, 161Tb also emits a significant amount of conversion and Auger electrons. Greater therapeutic effect can therefore be expected in comparison to 177Lu. It also emits low-energy photons that are useful for gamma camera imaging. The 160Gd(n,γ)161Gd→161Tb production route was used to produce 161Tb by neutron irradiation of massive 160Gd targets (up to 40 mg) in nuclear reactors. A semiautomated procedure based on cation exchange chromatography was developed and applied to isolate no carrier added (n.c.a.) 161Tb from the bulk of the 160Gd target and from its stable decay product 161Dy. 161Tb was used for radiolabeling DOTA-Tyr3-octreotate; the radiolabeling profile was compared to the commercially available n.c.a. 177Lu. A 161Tb Derenzo phantom was imaged using a small-animal single-photon emission computed tomography camera. Up to 15 GBq of 161Tb was produced by long-term irradiation of Gd targets. Using a cation exchange resin, we obtained 80%–90% of the available 161Tb with high specific activity, radionuclide and chemical purity and in quantities sufficient for therapeutic applications. The 161Tb obtained was of the quality required to prepare 161Tb–DOTA-Tyr3-octreotate. We were able to produce 161Tb in n.c.a. form by irradiating highly enriched 160Gd targets; it can be obtained in the quantity and quality required for the preparation of 161Tb-labeled therapeutic agents.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reactive transport modelling was used to simulate solute transport, thermodynamic reactions, ion exchange and biodegradation in the Porewater Chemistry (PC) experiment at the Mont Terri Rock Laboratory. Simulations show that the most important chemical processes controlling the fluid composition within the borehole and the surrounding formation during the experiment are ion exchange, biodegradation and dissolution/precipitation reactions involving pyrite and carbonate minerals. In contrast, thermodynamic mineral dissolution/precipitation reactions involving alumo-silicate minerals have little impact on the fluid composition on the time-scale of the experiment. With the accurate description of the initial chemical condition in the formation in combination with kinetic formulations describing the different stages of bacterial activities, it has been possible to reproduce the evolution of important system parameters, such as the pH, redox potential, total organic C. dissolved inorganic C and SO(4) concentration. Leaching of glycerol from the pH-electrode may be the primary source of organic material that initiated bacterial growth, which caused the chemical perturbation in the borehole. Results from these simulations are consistent with data from the over-coring and demonstrate that the Opalinus Clay has a high buffering capacity in terms of chemical perturbations caused by bacterial activity. This buffering capacity can be attributed to the carbonate system as well as to the reactivity of clay surfaces.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We describe the steady-state function of the ubiquitous mammalian Na/H exchanger (NHE)1 isoform in voltage-clamped Chinese hamster ovary cells, as well as other cells, using oscillating pH-sensitive microelectrodes to quantify proton fluxes via extracellular pH gradients. Giant excised patches could not be used as gigaseal formation disrupts NHE activity within the patch. We first analyzed forward transport at an extracellular pH of 8.2 with no cytoplasmic Na (i.e., nearly zero-trans). The extracellular Na concentration dependence is sigmoidal at a cytoplasmic pH of 6.8 with a Hill coefficient of 1.8. In contrast, at a cytoplasmic pH of 6.0, the Hill coefficient is <1, and Na dependence often appears biphasic. Results are similar for mouse skin fibroblasts and for an opossum kidney cell line that expresses the NHE3 isoform, whereas NHE1(-/-) skin fibroblasts generate no proton fluxes in equivalent experiments. As proton flux is decreased by increasing cytoplasmic pH, the half-maximal concentration (K(1/2)) of extracellular Na decreases less than expected for simple consecutive ion exchange models. The K(1/2) for cytoplasmic protons decreases with increasing extracellular Na, opposite to predictions of consecutive exchange models. For reverse transport, which is robust at a cytoplasmic pH of 7.6, the K(1/2) for extracellular protons decreases only a factor of 0.4 when maximal activity is decreased fivefold by reducing cytoplasmic Na. With 140 mM of extracellular Na and no cytoplasmic Na, the K(1/2) for cytoplasmic protons is 50 nM (pH 7.3; Hill coefficient, 1.5), and activity decreases only 25% with extracellular acidification from 8.5 to 7.2. Most data can be reconstructed with two very different coupled dimer models. In one model, monomers operate independently at low cytoplasmic pH but couple to translocate two ions in "parallel" at alkaline pH. In the second "serial" model, each monomer transports two ions, and translocation by one monomer allosterically promotes translocation by the paired monomer in opposite direction. We conclude that a large fraction of mammalian Na/H activity may occur with a 2Na/2H stoichiometry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

MT Hard Water of Montana Tech of the University of Montana submits Task 3: Treatment Technology Validation for Water Softening Technology as an entry into the 2012 WERC Environmental Design Contest. Currently, there are several commercially available technologies that treat water hardness. The objective of this project is to develop a strategy to evaluate and validate different water hardness treatment technologies. MT Hard Water (MTHW) has studied several technologies including: electromagnetic water treatment, ion exchange, and reverse osmosis. For validation purposes, an electromagnetic water treatment system (ScaleRID) was selected according to the WERC task description.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Specific delivery to tumors and efficient cellular uptake of nucleic acids remain major challenges for gene-targeted cancer therapies. Here we report the use of a designed ankyrin repeat protein (DARPin) specific for the epithelial cell adhesion molecule (EpCAM) as a carrier for small interfering RNA (siRNA) complementary to the bcl-2 mRNA. For charge complexation of the siRNA, the DARPin was fused to a truncated human protamine-1 sequence. To increase the cell binding affinity and the amount of siRNA delivered into cells, DARPin dimers were generated and used as fusion proteins with protamine. All proteins expressed well in Escherichia coli in soluble form, yet, to remove tightly bound bacterial nucleic acids, they were purified under denaturing conditions by immobilized metal ion affinity chromatography, followed by refolding. The fusion proteins were capable of complexing four to five siRNA molecules per protamine, and fully retained the binding specificity for EpCAM as shown on MCF-7 breast carcinoma cells. In contrast to unspecific LipofectAMINE transfection, down-regulation of antiapoptotic bcl-2 using fusion protein complexed siRNA was strictly dependent on EpCAM binding and internalization. Inhibition of bcl-2 expression facilitated tumor cell apoptosis as shown by increased sensitivity to the anticancer agent doxorubicin.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In recent years, implementation of 68Ga-radiometalated peptides for PET imaging of cancer has attracted the attention of clinicians. Herein, we propose the use of 44Sc (half-life = 3.97 h, average β+ energy [Eβ+av] = 632 keV) as a valuable alternative to 68Ga (half-life = 68 min, Eβ+av = 830 keV) for imaging and dosimetry before 177Lu-based radionuclide therapy. The aim of the study was the preclinical evaluation of a folate conjugate labeled with cyclotron-produced 44Sc and its in vitro and in vivo comparison with the 177Lu-labeled pendant. Methods: 44Sc was produced via the 44Ca(p,n)44Sc nuclear reaction at a cyclotron (17.6 ± 1.8 MeV, 50 μA, 30 min) using an enriched 44Ca target (10 mg 44CaCO3, 97.00%). Separation from the target material was performed by a semiautomated process using extraction chromatography and cation exchange chromatography. Radiolabeling of a DOTA-folate conjugate (cm09) was performed at 95°C within 10 min. The stability of 44Sc-cm09 was tested in human plasma. 44Sc-cm09 was investigated in vitro using folate receptor–positive KB tumor cells and in vivo by PET/CT imaging of tumor-bearing mice Results: Under the given irradiation conditions, 44Sc was obtained in a maximum yield of 350 MBq at high radionuclide purity (>99%). Semiautomated isolation of 44Sc from 44Ca targets allowed formulation of up to 300 MBq of 44Sc in a volume of 200–400 μL of ammonium acetate/HCl solution (1 M, pH 3.5–4.0) within 10 min. Radiolabeling of cm09 was achieved with a radiochemical yield of greater than 96% at a specific activity of 5.2 MBq/nmol. In vitro, 44Sc-cm09 was stable in human plasma over the whole time of investigation and showed folate receptor–specific binding to KB tumor cells. PET/CT images of mice injected with 44Sc-cm09 allowed excellent visualization of tumor xenografts. Comparison of cm09 labeled with 44Sc and 177Lu revealed almost identical pharmacokinetics. Conclusion: This study presents a high-yield production and efficient separation method of 44Sc at a quality suitable for radiolabeling of DOTA-functionalized biomolecules. An in vivo proof-of-concept study using a DOTA-folate conjugate demonstrated the excellent features of 44Sc for PET imaging. Thus, 44Sc is a valid alternative to 68Ga for imaging and dosimetry before 177Lu-radionuclide tumor therapy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We assessed the suitability of the radiolanthanide 155 Tb (t1/2 = 5.32 days, Eγ = 87 keV (32%), 105 keV (25%)) in combination with variable tumor targeted biomolecules using preclinical SPECT imaging. Methods 155Tb was produced at ISOLDE (CERN, Geneva, Switzerland) by high-energy (~ 1.4 GeV) proton irradiation of a tantalum target followed by ionization and on-line mass separation. 155 Tb was separated from isobar and pseudo-isobar impurities by cation exchange chromatography. Four tumor targeting molecules – a somatostatin analog (DOTATATE), a minigastrin analog (MD), a folate derivative (cm09) and an anti-L1-CAM antibody (chCE7) – were radiolabeled with 155 Tb. Imaging studies were performed in nude mice bearing AR42J, cholecystokinin-2 receptor expressing A431, KB, IGROV-1 and SKOV-3ip tumor xenografts using a dedicated small-animal SPECT/CT scanner. Results The total yield of the two-step separation process of 155 Tb was 86%. 155 Tb was obtained in a physiological l-lactate solution suitable for direct labeling processes. The 155 Tb-labeled tumor targeted biomolecules were obtained at a reasonable specific activity and high purity (> 95%). 155 Tb gave high quality, high resolution tomographic images. SPECT/CT experiments allowed excellent visualization of AR42J and CCK-2 receptor-expressing A431 tumors xenografts in mice after injection of 155 Tb-DOTATATE and 155 Tb-MD, respectively. The relatively long physical half-life of 155 Tb matched in particular the biological half-lives of 155 Tb-cm09 and 155 Tb-DTPA-chCE7 allowing SPECT imaging of KB tumors, IGROV-1 and SKOV-3ip tumors even several days after administration. Conclusions The radiolanthanide 155 Tb may be of particular interest for low-dose SPECT prior to therapy with a therapeutic match such as the β--emitting radiolanthanides 177Lu, 161 Tb, 166Ho, and the pseudo-radiolanthanide 90Y.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Major episodic acidifications were observed on several occasions in first-order brooks at Acadia National Park, Mount Desert Island, Maine. Short-term declines of up to 2 pH units and 130-mu-eq L-1 acid-neutralizing capacity were caused by HCl from soil solutions, rather than by H2SO4 or HNO3 from precipitation, because (1) SO4 concentrations were constant or decreased during the pH depression, (2) Cl concentrations were greatest at the time of lowest pH, and (3) Na:Cl ratios decreased from values much greater than those in precipitation (a result of chemical weathering), to values equal to or less than those in precipitation. Dilution, increases in NO3 concentrations, or increased export or organic acidity from soils were insufficient to cause the observed decreases in pH. These data represent surface water acidifications due primarily to an ion exchange "salt effect" of Na+ for H+ in soil solution, and secondarily to dilution, neither of which is a consequence of acidic deposition. The requisite conditions for a major episodic salt effect acidification include acidic soils, and either an especially salt-laden wet precipitation event, or a period of accumulation of marine salts from dry deposition, followed by wet inputs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An experimental short-term acidification with HCl at a first-order stream in central Maine, USA was used to study processes controlling the changes in stream chemistry and to assess the ability of stream substrate to buffer pH. The streambed exerted a strong buffering capacity against pH change by ion exchange during the 6-hour acidification. Streambed substrates had substantial cation and anion exchange capacity in the pH range of 4.1 to 6.5. The ion exchange for cations and SO42- were rapid and reversible. The speed of release of cations from stream substrates was Na1+ > Ca2+ > Mg2+ > Aln+ > Be2+, perhaps relating to charge density of these cations. Ca2+ desorption dominated neutralisation of excess H+ for the first 2 hr. As the reservoir of exchangeable Ca diminished, desorption land possibly dissolution) of Al3+ became the dominant neutralising mechanism. The exchangeable land possibly soluble) reservoir of Al was not depleted during the 6-hour acidification. Sulphate adsorption during the acidification reduced the concentration of SO42- in stream water by as much as 20 mu eq L-1 (from 70 mu eq L-1). Desorption of SO42- and adsorption of base cat ions after the artificial acidification resulted in a prolongation of the pH depression. The streambed had the capacity to buffer stream water chemistry significantly during an acidifying event affecting the entire upstream catchment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of rotating ring–disk electrodes as generator-collector systems has so far been limited to the detection of Faradaic currents at the ring. As opposed to other generator-collector configurations, non-Faradaic detection has not yet been carried out with rotating ring–disk electrodes. In this study, a.c. perturbation based detection for measurement of the ring impedance is introduced. By using a conducting polymer-modified disk electrode in combination with a bare gold ring as a model, it is shown that the measured ring capacitance correlates with the polarization of the polymer film, most probably due to counter-ion exchange. A method of calculating the ring capacitance based on a small-signal sinusoid perturbation is described and the most important instrumental limitations are identified.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The double-stranded RNA (dsRNA) activated protein kinase, PKR, is one of the several enzymes induced by interferons and a key molecule mediating the antiviral effects of interferons. PKR contain an N-terminal, double-stranded RNA binding domain (dsRBD), which has two tandem copies of the motifs (dsRBM I and dsRBM II). Upon binding to viral dsRNA, PKR is activated via autophosphorylation. Activated PKR has several substrates; one of the examples is eukaryotic translation initiation factor 2 (eIF2a). The phosphorylation of eIF2a leads to the termination of cell growth by inhibiting protein synthesis in response to viral infection. The objective of this project was to characterize the dsRBM I and define the dsRNA binding using biophysical methods. First, the dsRBM I gene was cloned from a pET-28b to a pET-11a expression plasmid. N-terminal poly-histidine tags on pET-28b are for affinity purification; however, these tags can alter the structure and function of proteins, thus the gene of dsRBM I was transferred into the plasmid without tags (pET-11a) and expressed as a native protein. The dsRBM I was transformed into and expressed by Rosetta DE3plyS expression cells. Purification was done by FPLC using a Sepharose IEX ion exchange followed by Heparin affinity column; yielding pure protein was assayed by PAGE. Analytical Ultracentrifugation, Sedimentation Velocity, was used to characterize free solution association state and hydrodynamic properties of the protein. The slight decrease in S-value with concentration is due to the hydrodynamic non-ideality. No self association was observed. The obtained molecule weight was 10,079 Da. The calculated sedimentation constant at zero concentration at 20°C in water was 1.23 and its friction coefficient was 3.575 ´ 10-8. The frictional ratio of sphere and dsRBM I became 1.30. Therefore, dsRBM I must be non-globular and more asymmetric shape. Isolated dsRBM I exhibits the same tertiary fold as compared to context in the full domain but it exhibited weaker binding affinity than full domain to a 20 bp dsRNA. However, when the conditions allowed for its saturation, dsRBM I to 20 bp dsRNA has similar stoichiometry as full dsRBD.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Paracrine motogenic factors, including motility cytokines and extracellular matrix molecules secreted by normal cells, can stimulate metastatic cell invasion. For extracellular matrix molecules, both the intact molecules and the degradative products may exhibit these activities, which in some cases are not shared by the intact molecules. We found that human peritumoral and lung fibroblasts secrete motility-stimulating activity for several recently established human sarcoma cell strains. The motility of lung metastasis-derived human SYN-1 sarcoma cells was preferentially stimulated by human lung and peritumoral fibroblast motility-stimulating factors (FMSFs). FMSFs were nondialyzable, susceptible to trypsin, and sensitive to dithiothreitol. Cycloheximide inhibited accumulation of FMSF activity in conditioned medium; however, addition of cycloheximide to the migration assay did not significantly affect motility-stimulating activity. Purified hepatocyte growth factor/scatter factor (HGF/SF), rabbit anti-hHGF, and RT-PCR analysis of peritumoral and lung fibroblast HGF/SF mRNA expression indicated that FMSF activity was unrelated to HGF/SF. Partial purification of FMSF by gel exclusion chromatography revealed several peaks of activity, suggesting multiple FMSF molecules or complexes.^ We purified the fibroblast motility-stimulating factor from human lung fibroblast-conditioned medium to apparent homogeneity by sequential heparin affinity chromatography and DEAE anion exchange chromatography. Lysylendopeptidase C digestion of FMSF and sequencing of peptides purified by reverse phase HPLC after digestion identified it as an N-terminal fragment of human fibronectin. Purified FMSF stimulated predominantly chemotaxis but chemokinesis as well of SYN-1 sarcoma cells and was chemotactic for a variety of human sarcoma cells, including fibrosarcoma, leiomyosarcoma, liposarcoma, synovial sarcoma and neurofibrosarcoma cells. The motility-stimulating activity present in HLF-CM was completely eliminated by either neutralization or immunodepletion with a rabbit anti-human-fibronectin antibody, thus further confirming that the fibronectin fragment was the FMSF responsible for the motility stimulation of human soft tissue sarcoma cells. Since human soft tissue sarcomas have a distinctive hematogenous metastatic pattern (predominantly lung), FMSF may play a role in this process. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

IL-24 is an unusual member of the IL-10 family, which is considered a Th1 cytokine that exhibits tumor cell cytotoxicity. I describe the purification of this novel cytokine from the supernatant of IL-24 gene transfected human embryonic kidney cells and define the biochemical and functional properties of the soluble, human IL-24 protein. ^ I showed IL-24 non-covalently associates with bovine albumin. Immunoaffinity purification followed by cation exchange chromatography resulted in the significant enrichment of N-glycosylated IL-24. This protein elicited dose-dependent secretion of TNF-α and IL-6 from purified human monocytes and TNF-α secretion from PMA differentiated U937 cells. I showed this same protein was cytotoxic to melanoma tumor cells via the induction of IFN-α. ^ I reported IL-24 associates as at least two disulfide linked, N-glycosylated dimers. Enzymatic removal of N-linked-glycosylation from purified IL-24 partially diminished its cytokine and cytotoxic functions. Disruption of IL-24 dimers via reduction and alkylation of intermolecular disulfide bonds nearly abolished IL-24s cytokine function. ^ I elucidated IL-24 induced TNF-α secretion was pSTAT1, pSTAT3 as well as the class II heterodimeric receptors IL-20R1/IL-22R2 independent. I identified a requirement for the heterodimer of Toll-like Receptors 1 and 2 for IL-24s cytokine function and show a physical interaction between IL-24 and the extracellular domain of TLR-1. ^ Thus, I demonstrated that purified N-glycosylated, soluble, dimeric, human IL-24 exhibits both immunomodulatory and anti-cancer activities and these functions remain associated during purification. IL-24 induced TNF-α secretion required an interaction with the heterodimeric receptor TLR-1/2 and IL-24s cytotoxic affect to melanoma tumor cells was in part due to its induction of IFN-β. ^